
Claudio Parolo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2146255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A plug, print & play inkjet printing and impedance-based biosensing technology operating through a smartphone for clinical diagnostics. Biosensors and Bioelectronics, 2022, 196, 113737.	5.3	28
2	Low-Cost, User-Friendly, All-Integrated Smartphone-Based Microplate Reader for Optical-Based Biological and Chemical Analyses. Analytical Chemistry, 2022, 94, 1271-1285.	3.2	29
3	Optical smartphone-based sensing: diagnostic of biomarkers. , 2022, , 277-302.		1
4	Point-of-Care Sensors in Clinical Environments: Potential and Challenges. , 2022, , .		1
5	Continuous monitoring of molecular biomarkers in microfluidic devices. Progress in Molecular Biology and Translational Science, 2022, 187, 295-333.	0.9	Ο
6	A Novel Ratiometric Fluorescent Approach for the Modulation of the Dynamic Range of Lateral Flow Immunoassays. Advanced Materials Technologies, 2022, 7, .	3.0	17
7	Paper-based biosensors for cancer diagnostics. Trends in Chemistry, 2022, 4, 554-567.	4.4	14
8	A Programmable Electrochemical Yâ€Shaped DNA Scaffold Sensor for the Singleâ€Step Detection of Antibodies and Proteins in Untreated Biological Fluids. Advanced Functional Materials, 2022, 32, .	7.8	10
9	Lateral flow device for water fecal pollution assessment: from troubleshooting of its microfluidics using bioluminescence to colorimetric monitoring of generic <i>Escherichia coli</i> . Lab on A Chip, 2021, 21, 2417-2426.	3.1	19
10	The Microbiome Meets Nanotechnology: Opportunities and Challenges in Developing New Diagnostic Devices. Advanced Materials, 2021, 33, e2006104.	11.1	24
11	Electrochromism: An emerging and promising approach in (bio)sensing technology. Materials Today, 2021, 50, 476-498.	8.3	33
12	Rapid and Efficient Detection of the SARS-CoV-2 Spike Protein Using an Electrochemical Aptamer-Based Sensor. ACS Sensors, 2021, 6, 3093-3101.	4.0	129
13	Paper-Based Electrophoretic Bioassay: Biosensing in Whole Blood Operating via Smartphone. Analytical Chemistry, 2021, 93, 3112-3121.	3.2	21
14	Nanodiagnostics to Face SARS-CoV-2 and Future Pandemics: From an Idea to the Market and Beyond. ACS Nano, 2021, 15, 17137-17149.	7.3	32
15	Experimental Comparison in Sensing Breast Cancer Mutations by Signal ON and Signal OFF Paper-Based Electroanalytical Strips. Analytical Chemistry, 2020, 92, 1674-1679.	3.2	43
16	Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays. Nature Protocols, 2020, 15, 3788-3816.	5.5	235
17	Lateral flow assay modified with time-delay wax barriers as a sensitivity and signal enhancement strategy. Biosensors and Bioelectronics, 2020, 168, 112559.	5.3	43
18	Nanoparticle-based lateral flow assays. Comprehensive Analytical Chemistry, 2020, 89, 313-359.	0.7	5

2

CLAUDIO PAROLO

#	Article	IF	CITATIONS
19	Real-Time Monitoring of a Protein Biomarker. ACS Sensors, 2020, 5, 1877-1881.	4.0	60
20	E-DNA scaffold sensors and the reagentless, single-step, measurement of HIV-diagnostic antibodies in human serum. Microsystems and Nanoengineering, 2020, 6, 13.	3.4	27
21	Smart Chip for Visual Detection of Bacteria Using the Electrochromic Properties of Polyaniline. Analytical Chemistry, 2019, 91, 14960-14966.	3.2	44
22	Open Source Software for the Real-Time Control, Processing, and Visualization of High-Volume Electrochemical Data. Analytical Chemistry, 2019, 91, 12321-12328.	3.2	33
23	An electrochemical scaffold sensor for rapid syphilis diagnosis. Analyst, The, 2019, 144, 5277-5283.	1.7	26
24	An electrochemical aptamer-based sensor for the rapid and convenient measurement of l-tryptophan. Analytical and Bioanalytical Chemistry, 2019, 411, 4629-4635.	1.9	35
25	Calibration-Free Measurement of Phenylalanine Levels in the Blood Using an Electrochemical Aptamer-Based Sensor Suitable for Point-of-Care Applications. ACS Sensors, 2019, 4, 3227-3233.	4.0	78
26	A Serological Point-of-Care Test for the Detection of IgG Antibodies against Ebola Virus in Human Survivors. ACS Nano, 2018, 12, 63-73.	7.3	163
27	Quantifying Biomolecular Binding Constants using Video Paper Analytical Devices. Chemistry - A European Journal, 2018, 24, 9783-9787.	1.7	16
28	Expanding the Scope of Protein-Detecting Electrochemical DNA "Scaffold―Sensors. ACS Sensors, 2018, 3, 1271-1275.	4.0	37
29	Tuneable plasmonic gold dendrimer nanochains for sensitive disease detection. Journal of Materials Chemistry B, 2017, 5, 7262-7266.	2.9	17
30	Magnetic nanoparticle-molecular imprinted polymer: A new impedimetric sensor for tributyltin detection. Electrochemistry Communications, 2017, 82, 6-11.	2.3	37
31	Control of Electronâ€transfer in Immunonanosensors by Using Polyclonal and Monoclonal Antibodies. Electroanalysis, 2016, 28, 1795-1802.	1.5	4
32	Wireless paper-based biosensor reader for the detection of infectious diseases at the point of care. , 2016, , .		4
33	Annexin-V/quantum dot probes for multimodal apoptosis monitoring in living cells: improving bioanalysis using electrochemistry. Nanoscale, 2015, 7, 4097-4104.	2.8	17
34	Lab-in-a-syringe using gold nanoparticles for rapid immunosensing of protein biomarkers. Lab on A Chip, 2015, 15, 399-405.	3.1	48
35	Paper-Based Potentiometric Ion Sensing. Analytical Chemistry, 2014, 86, 9548-9553.	3.2	140
36	Paper-based electroanalytical devices with an integrated, stable reference electrode. Lab on A Chip, 2013, 13, 4103.	3.1	95

CLAUDIO PAROLO

#	Article	IF	CITATIONS
37	Paperâ€Based Electrodes for Nanoparticles Detection. Particle and Particle Systems Characterization, 2013, 30, 662-666.	1.2	18
38	Design, Preparation, and Evaluation of a Fixed-Orientation Antibody/Gold-Nanoparticle Conjugate as an Immunosensing Label. ACS Applied Materials & amp; Interfaces, 2013, 5, 10753-10759.	4.0	89
39	Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes. Biosensors and Bioelectronics, 2013, 40, 412-416.	5.3	263
40	Paper-based nanobiosensors for diagnostics. Chemical Society Reviews, 2013, 42, 450-457.	18.7	481
41	Simple paper architecture modifications lead to enhanced sensitivity in nanoparticle based lateral flow immunoassays. Lab on A Chip, 2013, 13, 386-390.	3.1	111
42	Gold nanoparticles decorated with a ferrocene derivative as a potential shift-based transducing system of interest for sensitive immunosensing. Journal of Materials Chemistry B, 2013, 1, 2951.	2.9	23
43	Size-dependent direct electrochemical detection of gold nanoparticles: application in magnetoimmunoassays. Nanoscale, 2011, 3, 3350.	2.8	53
44	Immunosensing using nanoparticles. Materials Today, 2010, 13, 24-34.	8.3	131