Oveimar Barbosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2145536/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lecitase ultra: A phospholipase with great potential in biocatalysis. Molecular Catalysis, 2019, 473, 110405.	2.0	43
2	Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnology Advances, 2019, 37, 746-770.	11.7	409
3	Novozym 435: the "perfect―lipase immobilized biocatalyst?. Catalysis Science and Technology, 2019, 9, 2380-2420.	4.1	393
4	Cooperativity of covalent attachment and ion exchange on alcalase immobilization using glutaraldehyde chemistry: Enzyme stabilization and improved proteolytic activity. Biotechnology Progress, 2019, 35, e2768.	2.6	22
5	Further Stabilization of Alcalase Immobilized on Glyoxyl Supports: Amination Plus Modification with Glutaraldehyde. Molecules, 2018, 23, 3188.	3.8	17
6	Immobilization/Stabilization of Ficin Extract on Glutaraldehyde-Activated Agarose Beads. Variables That Control the Final Stability and Activity in Protein Hydrolyses. Catalysts, 2018, 8, 149.	3.5	69
7	Solid phase chemical modification of agarose glyoxyl-ficin: Improving activity and stability properties by amination and modification with glutaraldehyde. Process Biochemistry, 2018, 73, 109-116.	3.7	26
8	Immobilization of CALB on activated chitosan: Application to enzymatic synthesis in supercritical and near-critical carbon dioxide. Biotechnology Reports (Amsterdam, Netherlands), 2017, 14, 16-26.	4.4	72
9	Stabilization of ficin extract by immobilization on glyoxyl agarose. Preliminary characterization of the biocatalyst performance in hydrolysis of proteins. Process Biochemistry, 2017, 58, 98-104.	3.7	54
10	Polyethylenimine: a very useful ionic polymer in the design of immobilized enzyme biocatalysts. Journal of Materials Chemistry B, 2017, 5, 7461-7490.	5.8	228
11	Reversible Immobilization of Lipases on Heterofunctional Octyl-Amino Agarose Beads Prevents Enzyme Desorption. Molecules, 2016, 21, 646.	3.8	58
12	Immobilization of Lipases on Heterofunctional Octyl–Glyoxyl Agarose Supports. Methods in Enzymology, 2016, 571, 73-85.	1.0	28
13	Reversible immobilization of lipases on octyl-glutamic agarose beads: A mixed adsorption that reinforces enzyme immobilization. Journal of Molecular Catalysis B: Enzymatic, 2016, 128, 10-18.	1.8	70
14	Easy stabilization of interfacially activated lipases using heterofunctional divinyl sulfone activated-octyl agarose beads. Modulation of the immobilized enzymes by altering their nanoenvironment. Process Biochemistry, 2016, 51, 865-874.	3.7	88
15	Chemical Modification in the Design of Immobilized Enzyme Biocatalysts: Drawbacks and Opportunities. Chemical Record, 2016, 16, 1436-1455.	5.8	183
16	Improved immobilization and stabilization of lipase from Rhizomucor miehei on octyl-glyoxyl agarose beads by using CaCl2. Process Biochemistry, 2016, 51, 48-52.	3.7	67
17	Chemical amination of lipases improves their immobilization on octyl-glyoxyl agarose beads. Catalysis Today, 2016, 259, 107-118.	4.4	68
18	Importance of the Support Properties for Immobilization or Purification of Enzymes. ChemCatChem, 2015, 7, 2413-2432.	3.7	466

#	Article	IF	CITATIONS
19	Bovine trypsin immobilization on agarose activated with divinylsulfone: Improved activity and stability via multipoint covalent attachment. Journal of Molecular Catalysis B: Enzymatic, 2015, 117, 38-44.	1.8	93
20	Immobilization of lipases on glyoxyl–octyl supports: Improved stability and reactivation strategies. Process Biochemistry, 2015, 50, 1211-1217.	3.7	73
21	Characterization of supports activated with divinyl sulfone as a tool to immobilize and stabilize enzymes via multipoint covalent attachment. Application to chymotrypsin. RSC Advances, 2015, 5, 20639-20649.	3.6	104
22	Use of Lecitase-Ultra immobilized on styrene-divinylbenzene beads as catalyst of esterification reactions: Effects of ultrasounds. Catalysis Today, 2015, 255, 27-32.	4.4	18
23	Improved performance of lipases immobilized on heterofunctional octyl-glyoxyl agarose beads. RSC Advances, 2015, 5, 11212-11222.	3.6	129
24	Optimization and characterization of CLEAs of the very thermostable dimeric peroxidase from Roystonea regia. RSC Advances, 2015, 5, 53047-53053.	3.6	5
25	Reactivation of lipases by the unfolding and refolding of covalently immobilized biocatalysts. RSC Advances, 2015, 5, 55588-55594.	3.6	43
26	Evaluation of divinylsulfone activated agarose to immobilize lipases and to tune their catalytic properties. Process Biochemistry, 2015, 50, 918-927.	3.7	91
27	Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnology Advances, 2015, 33, 435-456.	11.7	568
28	Immobilization of Proteins in Poly-Styrene-Divinylbenzene Matrices: Functional Properties and Applications. Current Organic Chemistry, 2015, 19, 1707-1718.	1.6	62
29	Tuning lipase B from Candida antarctica C–C bond promiscuous activity by immobilization on poly-styrene-divinylbenzene beads. RSC Advances, 2014, 4, 6219.	3.6	31
30	Clutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Advances, 2014, 4, 1583-1600.	3.6	669
31	Amination of enzymes to improve biocatalyst performance: coupling genetic modification and physicochemical tools. RSC Advances, 2014, 4, 38350-38374.	3.6	117
32	Tuning of Lecitase features via solid-phase chemical modification: Effect of the immobilization protocol. Process Biochemistry, 2014, 49, 604-616.	3.7	65
33	Combined Effects of Ultrasound and Immobilization Protocol on Butyl Acetate Synthesis Catalyzed by CALB. Molecules, 2014, 19, 9562-9576.	3.8	42
34	Evaluation of Styrene-Divinylbenzene Beads as a Support to Immobilize Lipases. Molecules, 2014, 19, 7629-7645.	3.8	62
35	Heterofunctional Supports in Enzyme Immobilization: From Traditional Immobilization Protocols to Opportunities in Tuning Enzyme Properties. Biomacromolecules, 2013, 14, 2433-2462.	5.4	429
36	Stabilization of the hexameric glutamate dehydrogenase from Escherichia coli by cations and polyethyleneimine. Enzyme and Microbial Technology, 2013, 52, 211-217.	3.2	45

Oveimar Barbosa

#	Article	IF	CITATIONS
37	Biotechnological prospects of the lipase from Mucor javanicus. Journal of Molecular Catalysis B: Enzymatic, 2013, 93, 34-43.	1.8	21
38	Improved production of butyl butyrate with lipase from Thermomyces lanuginosus immobilized on styrene–divinylbenzene beads. Bioresource Technology, 2013, 134, 417-422.	9.6	94
39	Solid-phase modification with succinic polyethyleneglycol of aminated lipase B from Candida antarctica: Effect of the immobilization protocol on enzyme catalytic properties. Journal of Molecular Catalysis B: Enzymatic, 2013, 87, 75-82.	1.8	18
40	Versatility of glutaraldehyde to immobilize lipases: Effect of the immobilization protocol on the properties of lipase B from Candida antarctica. Process Biochemistry, 2012, 47, 1220-1227.	3.7	188
41	Chemical amination of lipase B from Candida antarctica is an efficient solution for the preparation of crosslinked enzyme aggregates. Process Biochemistry, 2012, 47, 2373-2378.	3.7	55
42	Optimized preparation of CALB-CLEAs by response surface methodology: The necessity to employ a feeder to have an effective crosslinking. Journal of Molecular Catalysis B: Enzymatic, 2012, 80, 7-14.	1.8	72
43	Effect of solid-phase chemical modification on the features of the lipase from Thermomyces lanuginosus. Process Biochemistry, 2012, 47, 460-466.	3.7	34
44	The slow-down of the CALB immobilization rate permits to control the inter and intra molecular modification produced by glutaraldehyde. Process Biochemistry, 2012, 47, 766-774.	3.7	62
45	Modulation of the properties of immobilized CALB by chemical modification with 2,3,4-trinitrobenzenesulfonate or ethylendiamine. Advantages of using adsorbed lipases on hydrophobic supports. Process Biochemistry, 2012, 47, 867-876.	3.7	66
46	Effect of the immobilization protocol on the properties of lipase B from Candida antarctica in organic media: Enantiospecifc production of atenolol acetate. Journal of Molecular Catalysis B: Enzymatic, 2011, 71, 124-132.	1.8	59
47	Kinetic resolution of (R/S)-propranolol (1-isopropylamino-3-(1-naphtoxy)-2-propanolol) catalyzed by immobilized preparations of Candida antarctica lipase B (CAL-B). New Biotechnology, 2010, 27, 844-850.	4.4	38