S?nan D Akkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2145358/publications.pdf Version: 2024-02-01

S2ΝΙΛΝΙ Π ΔΚΚΛΡ

#	Article	IF	CITATIONS
1	Model of seismic design lateral force levels for the existing reinforced concrete European building stock. Bulletin of Earthquake Engineering, 2021, 19, 2839-2865.	4.1	23
2	Impact of rupture-plane uncertainty on earthquake hazard: observations from the 30 october 2020 Samos earthquake. Bulletin of Earthquake Engineering, 2021, 19, 2739-2761.	4.1	4
3	A procedure to develop a backbone ground-motion model: A case study for its implementation. Earthquake Spectra, 2021, 37, 2523-2544.	3.1	3
4	Earthquake Physical Risk/Loss Assessment Models and Applications: A Case Study on Content Loss Modeling Conditioned on Building Damage. Springer Tracts in Civil Engineering, 2021, , 223-237.	0.5	0
5	A risk-based multi-level stress test methodology: application to six critical non-nuclear infrastructures in Europe. Natural Hazards, 2020, 100, 595-633.	3.4	17
6	A new formulation for a codeâ€based vertical design spectrum. Earthquake Engineering and Structural Dynamics, 2020, 49, 963-980.	4.4	5
7	Current Challenges and Future Trends in Analytical Fragility and Vulnerability Modeling. Earthquake Spectra, 2019, 35, 1927-1952.	3.1	113
8	Assessment of Aleatory and Epistemic Uncertainty for Groundâ€Motion Intensity Measure Prediction in Turkey. Bulletin of the Seismological Society of America, 2019, 109, 263-283.	2.3	4
9	A Candidate Proxy to be used in Intensity-Based Triggering Mechanism for Parametric CAT-Bond Insurance: Istanbul Case Study. Earthquake Spectra, 2019, 35, 565-588.	3.1	3
10	A probabilistic procedure to describe site amplification factors for seismic design codes. Soil Dynamics and Earthquake Engineering, 2019, 126, 105068.	3.8	6
11	Implementation of Near-Fault Forward Directivity Effects in Seismic Design Codes. Geotechnical, Geological and Earthquake Engineering, 2018, , 183-201.	0.2	0
12	The 2014 seismic hazard model of the Middle East: overview and results. Bulletin of Earthquake Engineering, 2018, 16, 3535-3566.	4.1	43
13	Seismic hazard map of the Middle East. Bulletin of Earthquake Engineering, 2018, 16, 3567-3570.	4.1	48
14	Evolution of seismic hazard maps in Turkey. Bulletin of Earthquake Engineering, 2018, 16, 3197-3228.	4.1	45
15	Seismotectonic database of Turkey. Bulletin of Earthquake Engineering, 2018, 16, 3277-3316.	4.1	58
16	The 2014 Earthquake Model of the Middle East: ground motion model and uncertainties. Bulletin of Earthquake Engineering, 2018, 16, 3497-3533.	4.1	47
17	Ground-motion characterization for the probabilistic seismic hazard assessment in Turkey. Bulletin of Earthquake Engineering, 2018, 16, 3439-3463.	4.1	40
18	A study on major seismological and fault-site parameters affecting near-fault directivity ground-motion demands for strike-slip faulting for their possible inclusion in seismic design codes. Soil Dynamics and Earthquake Engineering, 2018, 104, 88-105.	3.8	13

#	Article	IF	CITATIONS
19	Regional to country-based seismic hazard modeling. Bulletin of Earthquake Engineering, 2018, 16, 3195-3196.	4.1	0
20	A Ground-Motion Logic-Tree Scheme for Regional Seismic Hazard Studies. Earthquake Spectra, 2017, 33, 837-856.	3.1	18
21	Cumulative absolute velocity, Arias intensity and significant duration predictive models from a pan-European strong-motion dataset. Bulletin of Earthquake Engineering, 2017, 15, 1881-1898.	4.1	35
22	A model for predicting vertical component peak ground acceleration (PGA), peak ground velocity (PGV), and 5% damped pseudospectral acceleration (PSA) for Europe and the Middle East. Bulletin of Earthquake Engineering, 2017, 15, 2617-2643.	4.1	16
23	Probabilistic permanent fault displacement hazard via Monte Carlo simulation and its consideration for the probabilistic risk assessment of buried continuous steel pipelines. Earthquake Engineering and Structural Dynamics, 2017, 46, 605-620.	4.4	27
24	EFFECT OF MAJOR SEISMOLOGICAL PARAMETERS ON DIRECTIVITY DOMINANT SPECTRAL AMPLIFICATION. , 2017, , .		1
25	SINGLE STATION SIGMA FOR TURKISH STRONG MOTION STATIONS. , 2017, , .		0
26	Application of a Monteâ€Carlo simulation approach for the probabilistic assessment of seismic hazard for geographically distributed portfolio. Earthquake Engineering and Structural Dynamics, 2016, 45, 525-541.	4.4	22
27	An updated and unified earthquake catalogue for the Western Balkan Region. Bulletin of Earthquake Engineering, 2016, 14, 321-343.	4.1	30
28	A Groundâ€Motion Predictive Model for Iran and Turkey for Horizontal PGA, PGV, and 5% Damped Response Spectrum: Investigation of Possible Regional Effects. Bulletin of the Seismological Society of America, 2015, 105, 963-980.	2.3	102
29	Developments in Ground Motion Predictive Models and Accelerometric Data Archiving in the Broader European Region. Geotechnical, Geological and Earthquake Engineering, 2015, , 293-320.	0.2	0
30	Reply to "Comment on 'A New Procedure for Selecting and Ranking Ground-Motion Prediction Equations (GMPEs): The Euclidean Distance-Based Ranking (EDR) Method' by Ozkan Kale and Sinan Akkar" by Sum Mak, Robert Alan Clements, and Danijel Schorlemmer. Bulletin of the Seismological Society of America, 2014, 104, 3141-3144.	2.3	8
31	Reference database for seismic ground-motion in Europe (RESORCE). Bulletin of Earthquake Engineering, 2014, 12, 311-339.	4.1	212
32	Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East. Bulletin of Earthquake Engineering, 2014, 12, 359-387.	4.1	379
33	Compatible ground-motion prediction equations for damping scaling factors and vertical-to-horizontal spectral amplitude ratios for the broader Europe region. Bulletin of Earthquake Engineering, 2014, 12, 517-547.	4.1	86
34	Comparisons among the five ground-motion models developed using RESORCE for the prediction of response spectral accelerations due to earthquakes in Europe and the Middle East. Bulletin of Earthquake Engineering, 2014, 12, 341-358.	4.1	71
35	Evaluation of a recently proposed record selection and scaling procedure for lowâ€rise to midâ€rise reinforced concrete buildings and its use for probabilistic risk assessment studies. Earthquake Engineering and Structural Dynamics, 2014, 43, 889-908.	4.4	9

3

#	Article	IF	CITATIONS
37	Rapid Seismic Assessment Procedures for the Turkish Building Stock. Geotechnical, Geological and Earthquake Engineering, 2014, , 15-35.	0.2	4
38	A Model for Single-Station Standard Deviation Using Data from Various Tectonic Regions. Bulletin of the Seismological Society of America, 2013, 103, 3149-3163.	2.3	120
39	A Nonlinear Siteâ€Amplification Model for the Next Panâ€European Groundâ€Motion Prediction Equations. Bulletin of the Seismological Society of America, 2013, 103, 19-32.	2.3	69
40	A New Procedure for Selecting and Ranking Ground-Motion Prediction Equations (GMPEs): The Euclidean Distance-Based Ranking (EDR) Method. Bulletin of the Seismological Society of America, 2013, 103, 1069-1084.	2.3	117
41	Using Pad-Stripped Acausally Filtered Strong-Motion Data. Bulletin of the Seismological Society of America, 2012, 102, 751-760.	2.3	54
42	Consistent Source-to-Site Distance Metrics in Ground-Motion Prediction Equations and Seismic Source Models for PSHA. Earthquake Spectra, 2012, 28, 1-15.	3.1	73
43	A procedure on ground motion selection and scaling for nonlinear response of simple structural systems. Earthquake Engineering and Structural Dynamics, 2012, 41, 1693-1707.	4.4	38
44	Seismic risk prioritization of residential buildings in Istanbul. Earthquake Engineering and Structural Dynamics, 2012, 41, 1533-1547.	4.4	3
45	Toward a ground-motion logic tree for probabilistic seismic hazard assessment in Europe. Journal of Seismology, 2012, 16, 451-473.	1.3	176
46	Extending ground-motion prediction equations for spectral accelerations to higher response frequencies. Bulletin of Earthquake Engineering, 2012, 10, 379-399.	4.1	12
47	8 March 2010 Elazig-Kovancilar (Turkey) Earthquake: Observations on Ground Motions and Building Damage. Seismological Research Letters, 2011, 82, 42-58.	1.9	29
48	Lateral stiffness estimation in frames and its implementation to continuum models for linear and nonlinear static analysis. Bulletin of Earthquake Engineering, 2011, 9, 1097-1114.	4.1	11
49	The highâ€frequency limit of usable response spectral ordinates from filtered analogue and digital strongâ€motion accelerograms. Earthquake Engineering and Structural Dynamics, 2011, 40, 1387-1401.	4.4	36
50	A Model for Vertical-to-Horizontal Response Spectral Ratios for Europe and the Middle East. Bulletin of the Seismological Society of America, 2011, 101, 1783-1806.	2.3	67
51	A Predictive Ground-Motion Model for Turkey and Its Comparison with Recent Local and Global GMPEs. Geotechnical, Geological and Earthquake Engineering, 2011, , 39-52.	0.2	2
52	Current empirical ground-motion prediction equations for Europe and their application to Eurocode 8. Bulletin of Earthquake Engineering, 2010, 8, 5-26.	4.1	29
53	The recently compiled Turkish strong motion database: preliminary investigation for seismological parameters. Journal of Seismology, 2010, 14, 457-479.	1.3	94
54	A Local Ground-Motion Predictive Model for Turkey, and Its Comparison with Other Regional and Global Ground-Motion Models. Bulletin of the Seismological Society of America, 2010, 100, 2978-2995.	2.3	129

#	Article	IF	CITATIONS
55	Empirical Equations for the Prediction of PGA, PGV, and Spectral Accelerations in Europe, the Mediterranean Region, and the Middle East. Seismological Research Letters, 2010, 81, 195-206.	1.9	535
56	Uncertainty in Nonlinear SDoF Response Due to Long-Period Noise of Accelerograms. Geotechnical, Geological and Earthquake Engineering, 2010, , 69-78.	0.2	1
57	On Baseline Corrections and Uncertainty in Response Spectrafor Baseline Variations Commonly Encounteredin Digital Accelerograph Records. Bulletin of the Seismological Society of America, 2009, 99, 1671-1690.	2.3	58
58	Assessment of Point-Source Stochastic Simulations Using Recently Derived Ground-Motion Prediction Equations. Bulletin of the Seismological Society of America, 2009, 99, 3172-3191.	2.3	5
59	Direct use of PGV for estimating peak nonlinear oscillator displacements. Earthquake Engineering and Structural Dynamics, 2008, 37, 1411-1433.	4.4	15
60	An Evaluation of Site Classification for National Strong-Motion Recording Stations in Turkey. , 2008, ,		1
61	The Influence of Magnitude Range on Empirical Ground-Motion Prediction. Bulletin of the Seismological Society of America, 2007, 97, 2152-2170.	2.3	145
62	Assessment of Improved Nonlinear Static Procedures in FEMA-440. Journal of Structural Engineering, 2007, 133, 1237-1246.	3.4	37
63	Empirical Prediction Equations for Peak Ground Velocity Derived from Strong-Motion Records from Europe and the Middle East. Bulletin of the Seismological Society of America, 2007, 97, 511-530.	2.3	157
64	Prediction of elastic displacement response spectra in Europe and the Middle East. Earthquake Engineering and Structural Dynamics, 2007, 36, 1275-1301.	4.4	134
65	Generalized Interstory Drift Spectrum. Journal of Structural Engineering, 2006, 132, 840-852.	3.4	96
66	Influence of long-period filter cut-off on elastic spectral displacements. Earthquake Engineering and Structural Dynamics, 2006, 35, 1145-1165.	4.4	140
67	NONLINEAR DRIFT DEMANDS ON MOMENT-RESISTING STIFF FRAMES. , 2006, , 505-519.		Ο
68	Effect of peak ground velocity on deformation demands for SDOF systems. Earthquake Engineering and Structural Dynamics, 2005, 34, 1551-1571.	4.4	91
69	Displacement-Based Fragility Functions for Low- and Mid-rise Ordinary Concrete Buildings. Earthquake Spectra, 2005, 21, 901-927.	3.1	110
70	AN EVALUATION OF THE STRONG GROUND MOTION RECORDED DURING THE MAY 1, 2003 BINGÃ-L TURKEY, EARTHQUAKE. Journal of Earthquake Engineering, 2005, 9, 173-197.	2.5	10
71	Title is missing!. Journal of Earthquake Engineering, 2005, 9, 173.	2.5	6
72	Statistical Evaluation of Approximate Methods for Estimating Maximum Deformation Demands on Existing Structures. Journal of Structural Engineering, 2005, 131, 160-172.	3.4	57

#	Article	IF	CITATIONS
73	Drift Estimates in Frame Buildings Subjected to Near-Fault Ground Motions. Journal of Structural Engineering, 2005, 131, 1014-1024.	3.4	155
74	Rapid Assessment of Building Response Using Generalized Interstory Drift Spectra. , 2005, , 107-121.		1
75	Influence of Ground Motion Intensity on the Performance of Low- and Mid-Rise Ordinary Concrete Buildings. , 2005, , 123-138.		1
76	Effect of causal and acausal filters on elastic and inelastic response spectra. Earthquake Engineering and Structural Dynamics, 2003, 32, 1729-1748.	4.4	112
77	Dynamic Instability of Simple Structural Systems. Journal of Structural Engineering, 2003, 129, 1722-1726.	3.4	66
78	Peak Ground Velocity Sensitive Deformation Demands and a Rapid Damage Assessment Approach. , 2003, , 77-96.		4
79	A Critical Examination of Near-Field Accelerograms from the Sea of Marmara Region Earthquakes. Bulletin of the Seismological Society of America, 2002, 92, 428-447.	2.3	28
80	A simple replacment for the drift spectrum. Engineering Structures, 2002, 24, 1477-1484.	5.3	25
81	PROPOSITION OF A SPECTRAL AMPLIFICATION MODEL FOR NEAR FAULT DIRECTIVITY EFFECT WITH UTILIZING PROBABILISTIC EARTHQUAKE SCENARIOS. Anadolu University Journal of Science and Technology: B Theoretical Sciences, 0, , .	0.8	0