Paul Bamborough

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2145268/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design, Synthesis, and Characterization of I-BET567, a Pan-Bromodomain and Extra Terminal (BET) Bromodomain Oral Candidate. Journal of Medicinal Chemistry, 2022, 65, 2262-2287.	6.4	14
2	Investigation of Janus Kinase (JAK) Inhibitors for Lung Delivery and the Importance of Aldehyde Oxidase Metabolism. Journal of Medicinal Chemistry, 2022, 65, 633-664.	6.4	6
3	Template-Hopping Approach Leads to Potent, Selective, and Highly Soluble Bromo and Extraterminal Domain (BET) Second Bromodomain (BD2) Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 3249-3281.	6.4	19
4	Fragment-based Scaffold Hopping: Identification of Potent, Selective, and Highly Soluble Bromo and Extra Terminal Domain (BET) Second Bromodomain (BD2) Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 10772-10805.	6.4	17
5	Optimization of Naphthyridones into Selective TATA-Binding Protein Associated Factor 1 (TAF1) Bromodomain Inhibitors. ACS Medicinal Chemistry Letters, 2021, 12, 1308-1317.	2.8	4
6	Expanding Bromodomain Targeting into Neglected Parasitic Diseases. ACS Infectious Diseases, 2021, 7, 2953-2958.	3.8	20
7	Discovery of a Bromodomain and Extraterminal Inhibitor with a Low Predicted Human Dose through Synergistic Use of Encoded Library Technology and Fragment Screening. Journal of Medicinal Chemistry, 2020, 63, 714-746.	6.4	45
8	Design and Synthesis of a Highly Selective and <i>In Vivo</i> -Capable Inhibitor of the Second Bromodomain of the Bromodomain and Extra Terminal Domain Family of Proteins. Journal of Medicinal Chemistry, 2020, 63, 9070-9092.	6.4	40
9	GSK789: A Selective Inhibitor of the First Bromodomains (BD1) of the Bromo and Extra Terminal Domain (BET) Proteins. Journal of Medicinal Chemistry, 2020, 63, 9045-9069.	6.4	59
10	The Optimization of a Novel, Weak Bromo and Extra Terminal Domain (BET) Bromodomain Fragment Ligand to a Potent and Selective Second Bromodomain (BD2) Inhibitor. Journal of Medicinal Chemistry, 2020, 63, 9093-9126.	6.4	41
11	Structure-Based Design of a Bromodomain and Extraterminal Domain (BET) Inhibitor Selective for the N-Terminal Bromodomains That Retains an Anti-inflammatory and Antiproliferative Phenotype. Journal of Medicinal Chemistry, 2020, 63, 9020-9044.	6.4	38
12	CDK12 inhibition reduces abnormalities in cells from patients with myotonic dystrophy and in a mouse model. Science Translational Medicine, 2020, 12, .	12.4	12
13	Application of Atypical Acetyl-lysine Methyl Mimetics in the Development of Selective Inhibitors of the Bromodomain-Containing Protein 7 (BRD7)/Bromodomain-Containing Protein 9 (BRD9) Bromodomains. Journal of Medicinal Chemistry, 2020, 63, 5816-5840.	6.4	21
14	Selective targeting of BD1 and BD2 of the BET proteins in cancer and immunoinflammation. Science, 2020, 368, 387-394.	12.6	274
15	GSK973 Is an Inhibitor of the Second Bromodomains (BD2s) of the Bromodomain and Extra-Terminal (BET) Family. ACS Medicinal Chemistry Letters, 2020, 11, 1581-1587.	2.8	25
16	Optimization of Potent ATAD2 and CECR2 Bromodomain Inhibitors with an Atypical Binding Mode. Journal of Medicinal Chemistry, 2020, 63, 5212-5241.	6.4	14
17	A Qualified Success: Discovery of a New Series of ATAD2 Bromodomain Inhibitors with a Novel Binding Mode Using High-Throughput Screening and Hit Qualification. Journal of Medicinal Chemistry, 2019, 62, 7506-7525.	6.4	19
18	Discovery of Tetrahydroquinoxalines as Bromodomain and Extra-Terminal Domain (BET) Inhibitors with Selectivity for the Second Bromodomain. Journal of Medicinal Chemistry, 2018, 61, 4317-4334.	6.4	94

Paul Bamborough

#	Article	IF	CITATIONS
19	3,5-Disubstituted-indole-7-carboxamides as IKKβ Inhibitors: Optimization of Oral Activity via the C3 Substituent. ACS Medicinal Chemistry Letters, 2018, 9, 1164-1169.	2.8	7
20	Aiming to Miss a Moving Target: Bromo and Extra Terminal Domain (BET) Selectivity in Constrained ATAD2 Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 8321-8336.	6.4	17
21	Rapid and Reliable Binding Affinity Prediction of Bromodomain Inhibitors: A Computational Study. Journal of Chemical Theory and Computation, 2017, 13, 784-795.	5.3	59
22	Discovery of a Potent, Cell Penetrant, and Selective p300/CBP-Associated Factor (PCAF)/General Control Nonderepressible 5 (GCN5) Bromodomain Chemical Probe. Journal of Medicinal Chemistry, 2017, 60, 695-709.	6.4	70
23	A Chemical Probe for the ATAD2 Bromodomain. Angewandte Chemie, 2016, 128, 11554-11558.	2.0	10
24	A Chemical Probe for the ATAD2 Bromodomain. Angewandte Chemie - International Edition, 2016, 55, 11382-11386.	13.8	67
25	Comprehensive characterization of the Published Kinase Inhibitor Set. Nature Biotechnology, 2016, 34, 95-103.	17.5	289
26	Discovery of I-BRD9, a Selective Cell Active Chemical Probe for Bromodomain Containing Protein 9 Inhibition. Journal of Medicinal Chemistry, 2016, 59, 1425-1439.	6.4	177
27	Structure-Based Optimization of Naphthyridones into Potent ATAD2 Bromodomain Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 6151-6178.	6.4	81
28	Fragment-Based Discovery of Low-Micromolar ATAD2 Bromodomain Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 5649-5673.	6.4	75
29	Fragments in bromodomain drug discovery. MedChemComm, 2015, 6, 1587-1604.	3.4	17
30	Naphthyridines as Novel BET Family Bromodomain Inhibitors. ChemMedChem, 2014, 9, 580-589.	3.2	32
31	1,3-Dimethyl Benzimidazolones Are Potent, Selective Inhibitors of the BRPF1 Bromodomain. ACS Medicinal Chemistry Letters, 2014, 5, 1190-1195.	2.8	78
32	The Discovery of I-BET726 (CSK1324726A), a Potent Tetrahydroquinoline ApoA1 Up-Regulator and Selective BET Bromodomain Inhibitor. Journal of Medicinal Chemistry, 2014, 57, 8111-8131.	6.4	159
33	Discovery of Epigenetic Regulator I-BET762: Lead Optimization to Afford a Clinical Candidate Inhibitor of the BET Bromodomains. Journal of Medicinal Chemistry, 2013, 56, 7501-7515.	6.4	271
34	System-based drug discovery within the human kinome. Expert Opinion on Drug Discovery, 2012, 7, 1053-1070.	5.0	32
35	4-Phenyl-7-azaindoles as potent, selective and bioavailable IKK2 inhibitors demonstrating good in vivo efficacy. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5222-5226.	2.2	22
36	Fragment-Based Discovery of Bromodomain Inhibitors Part 2: Optimization of Phenylisoxazole Sulfonamides. Journal of Medicinal Chemistry, 2012, 55, 587-596.	6.4	174

PAUL BAMBOROUGH

#	Article	IF	CITATIONS
37	Fragment-Based Discovery of Bromodomain Inhibitors Part 1: Inhibitor Binding Modes and Implications for Lead Discovery. Journal of Medicinal Chemistry, 2012, 55, 576-586.	6.4	182
38	ldentification of a novel series of BET family bromodomain inhibitors: Binding mode and profile of I-BET151 (GSK1210151A). Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2968-2972.	2.2	183
39	Discovery and Characterization of Small Molecule Inhibitors of the BET Family Bromodomains. Journal of Medicinal Chemistry, 2011, 54, 3827-3838.	6.4	318
40	Selectivity of Kinase Inhibitor Fragments. Journal of Medicinal Chemistry, 2011, 54, 5131-5143.	6.4	65
41	3,5-Disubstituted-indole-7-carboxamides: The discovery of a novel series of potent, selective inhibitors of IKK-β. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2255-2258.	2.2	18
42	The discovery and initial optimisation of pyrrole-2-carboxamides as inhibitors of p38α MAP kinase. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3936-3940.	2.2	12
43	Targeting IKKbeta for the treatment of rheumatoid arthritis. Drug News and Perspectives, 2010, 23, 483.	1.5	19
44	Progress Towards the Development of Anti-Inflammatory Inhibitors of IKKβ. Current Topics in Medicinal Chemistry, 2009, 9, 623-639.	2.1	24
45	4-Phenyl-7-azaindoles as potent and selective IKK2 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2504-2508.	2.2	28
46	p38α Mitogen-Activated Protein Kinase Inhibitors: Optimization of a Series of Biphenylamides to Give a Molecule Suitable for Clinical Progression. Journal of Medicinal Chemistry, 2009, 52, 6257-6269.	6.4	41
47	Biphenyl amide p38 kinase inhibitors 2: Optimisation and SAR. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 324-328.	2.2	28
48	Biphenyl amide p38 kinase inhibitors 1: Discovery and binding mode. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 318-323.	2.2	36
49	Biphenyl amide p38 kinase inhibitors 3: Improvement of cellular and in vivo activity. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4428-4432.	2.2	67
50	Kinase array design, back to front: Biaryl amides. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5285-5289.	2.2	22
51	Biphenyl amide p38 kinase inhibitors 4: DFG-in and DFG-out binding modes. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4433-4437.	2.2	58
52	Assessment of Chemical Coverage of Kinome Space and Its Implications for Kinase Drug Discovery. Journal of Medicinal Chemistry, 2008, 51, 7898-7914.	6.4	158
53	N-4-Pyrimidinyl-1H-indazol-4-amine inhibitors of Lck: Indazoles as phenol isosteres with improved pharmacokinetics. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 4363-4368.	2.2	44
54	The discovery of 2-amino-3,5-diarylbenzamide inhibitors of IKK-α and IKK-β kinases. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3972-3977.	2.2	60