Lei Bi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2145165/publications.pdf

Version: 2024-02-01

135	g 722	28274	43889
	8,733 citations		g-index
papers	citations	h-index	g-index
139	139	139	4808
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nature Photonics, 2011, 5, 758-762.	31.4	766
2	The role of oxygen vacancies of ABO ₃ perovskite oxides in the oxygen reduction reaction. Energy and Environmental Science, 2020, 13, 1408-1428.	30.8	477
3	Towards the Next Generation of Solid Oxide Fuel Cells Operating Below 600 °C with Chemically Stable Protonâ€Conducting Electrolytes. Advanced Materials, 2012, 24, 195-208.	21.0	451
4	Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides. Chemical Society Reviews, 2014, 43, 8255-8270.	38.1	361
5	Chemically Stable Pr and Y Coâ€Doped Barium Zirconate Electrolytes with High Proton Conductivity for Intermediateâ€Temperature Solid Oxide Fuel Cells. Advanced Functional Materials, 2011, 21, 158-166.	14.9	203
6	Proton-conducting solid oxide fuel cell (SOFC) with Y-doped BaZrO 3 electrolyte. Electrochemistry Communications, 2017, 80, 20-23.	4.7	155
7	Recent advances in layered Ln ₂ NiO _{4+$\hat{\Gamma}$} nickelates: fundamentals and prospects of their applications in protonic ceramic fuel and electrolysis cells. Journal of Materials Chemistry A, 2021, 9, 154-195.	10.3	153
8	MXene-based accordion 2D hybrid structure with Co9S8/C/Ti3C2Tx as efficient electromagnetic wave absorber. Chemical Engineering Journal, 2021, 414, 128875.	12.7	152
9	High-performance composite cathodes with tailored mixed conductivity for intermediate temperature solid oxide fuel cells using proton conducting electrolytes. Energy and Environmental Science, 2011, 4, 4984.	30.8	147
10	A novel cobalt-free cathode with triple-conduction for proton-conducting solid oxide fuel cells with unprecedented performance. Journal of Materials Chemistry A, 2019, 7, 16136-16148.	10.3	145
11	Highly-conductive proton-conducting electrolyte membranes with a low sintering temperature for solid oxide fuel cells. Journal of Membrane Science, 2018, 558, 17-25.	8.2	131
12	Simultaneous enhancement of recoverable energy density and efficiency of lead-free relaxor-ferroelectric BNT-based ceramics. Chemical Engineering Journal, 2020, 402, 125951.	12.7	126
13	Lowering grain boundary resistance of BaZr _{0.8} Y _{0.2} O _{3â^'Î} with LiNO ₃ sintering-aid improves proton conductivity for fuel cell operation. Physical Chemistry Chemical Physics, 2011, 13, 7692-7700.	2.8	121
14	Sinteractive anodic powders improve densification and electrochemical properties of BaZr0.8Y0.2O3â^l^electrolyte films for anode-supported solid oxide fuel cells. Energy and Environmental Science, 2011, 4, 1352.	30.8	118
15	Tailoring the Cathode–Electrolyte Interface with Nanoparticles for Boosting the Solid Oxide Fuel Cell Performance of Chemically Stable Protonâ€Conducting Electrolytes. Small, 2018, 14, e1801231.	10.0	118
16	Tailoring cations in a perovskite cathode for proton-conducting solid oxide fuel cells with high performance. Journal of Materials Chemistry A, 2019, 7, 20624-20632.	10.3	115
17	A high performance cathode for proton conducting solid oxide fuel cells. Journal of Materials Chemistry A, 2015, 3, 8405-8412.	10.3	113
18	A novel anode supported BaCe0.7Ta0.1Y0.2O3â^î electrolyte membrane for proton-conducting solid oxide fuel cell. Electrochemistry Communications, 2008, 10, 1598-1601.	4.7	112

#	Article	IF	CITATIONS
19	Sintering aids for proton-conducting oxides – A double-edged sword? A mini review. Electrochemistry Communications, 2020, 112, 106672.	4.7	111
20	Synthesis strategies for improving the performance of doped-BaZrO ₃ materials in solid oxide fuel cell applications. Journal of Materials Research, 2014, 29, 1-15.	2.6	106
21	A novel single phase cathode material for a proton-conducting SOFC. Electrochemistry Communications, 2009, 11, 688-690.	4.7	105
22	Y-doped BaZrO ₃ as a chemically stable electrolyte for proton-conducting solid oxide electrolysis cells (SOECs). Journal of Materials Chemistry A, 2015, 3, 5815-5819.	10.3	105
23	Construction of remarkable electromagnetic wave absorber from heterogeneous structure of Co-CoFe2O4@mesoporous hollow carbon spheres. Chemical Engineering Journal, 2021, 421, 129960.	12.7	104
24	Fabrication and characterization of an anode-supported hollow fiber SOFC. Journal of Power Sources, 2009, 187, 90-92.	7.8	103
25	A high-entropy spinel ceramic oxide as the cathode for proton-conducting solid oxide fuel cells. Journal of Advanced Ceramics, 2022, 11, 794-804.	17.4	102
26	Novel cobalt-free cathode materials BaCexFe1â^'xO3â^'Î' for proton-conducting solid oxide fuel cells. Journal of Power Sources, 2009, 194, 801-804.	7.8	98
27	Electromagnetic wave absorption performance of NiCo2X4 (XÂ=ÂO, S, Se, Te) spinel structures. Chemical Engineering Journal, 2021, 420, 129907.	12.7	96
28	Effect of Dopant–Host Ionic Radii Mismatch on Acceptor-Doped Barium Zirconate Microstructure and Proton Conductivity. Journal of Physical Chemistry C, 2017, 121, 9739-9747.	3.1	95
29	Electrochemical performance of protonic ceramic fuel cells with stable BaZrO3-based electrolyte: A mini-review. Electrochemistry Communications, 2018, 96, 11-15.	4.7	93
30	Synthesis of defect-rich palladium-tin alloy nanochain networks for formic acid oxidation. Journal of Colloid and Interface Science, 2018, 530, 189-195.	9.4	92
31	Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs). Electrochemistry Communications, 2012, 16, 37-40.	4.7	91
32	A perspective on DRT applications for the analysis of solid oxide cell electrodes. Electrochimica Acta, 2020, 349, 136328.	5.2	91
33	Tailoring electronic structure of perovskite cathode for proton-conducting solid oxide fuel cells with high performance. Journal of Power Sources, 2021, 489, 229486.	7.8	89
34	Prontonic ceramic membrane fuel cells with layered GdBaCo2O5+x cathode prepared by gel-casting and suspension spray. Journal of Power Sources, 2008, 177, 330-333.	7.8	87
35	Impressive performance of proton-conducting solid oxide fuel cells using a first-generation cathode with tailored cations. Journal of Materials Chemistry A, 2019, 7, 18792-18798.	10.3	84
36	A novel ionic diffusion strategy to fabricate high-performance anode-supported solid oxidefuel cells (SOFCs) with proton-conducting Y-doped BaZrO ₃ films. Energy and Environmental Science, 2011, 4, 409-412.	30.8	83

#	Article	IF	Citations
37	Electrochemical Properties and Intermediateâ€Temperature Fuel Cell Performance of Dense Yttriumâ€Doped Barium Zirconate with Calcium Addition. Journal of the American Ceramic Society, 2012, 95, 627-635.	3.8	81
38	An Easily Sintered, Chemically Stable, Barium Zirconateâ€Based Proton Conductor for Highâ€Performance Protonâ€Conducting Solid Oxide Fuel Cells. Advanced Functional Materials, 2014, 24, 5695-5702.	14.9	81
39	Evaluating the effect of Pr-doping on the performance of strontium-doped lanthanum ferrite cathodes for protonic SOFCs. Ceramics International, 2020, 46, 4000-4005.	4.8	80
40	Indium as an ideal functional dopant for a proton-conducting solid oxide fuel cell. International Journal of Hydrogen Energy, 2009, 34, 2421-2425.	7.1	78
41	Fabrication of high-performance proton-conducting electrolytes from microwave prepared ultrafine powders for solid oxide fuel cells. Journal of Power Sources, 2019, 412, 664-669.	7.8	77
42	Exploring the role of NiO as a sintering aid in BaZr0.1Ce0.7Y0.2O3- \hat{l} electrolyte for proton-conducting solid oxide fuel cells. Journal of Power Sources, 2018, 399, 207-214.	7.8	71
43	Twisted palladium-copper nanochains toward efficient electrocatalytic oxidation of formic acid. Journal of Colloid and Interface Science, 2019, 537, 366-374.	9.4	68
44	Sinteractivity, proton conductivity and chemical stability of BaZr0.7In0.3O3-δ for solid oxide fuel cells (SOFCs). Solid State Ionics, 2011, 196, 59-64.	2.7	66
45	Tailoring cathode composite boosts the performance of proton-conducting SOFCs fabricated by a one-step co-firing method. Journal of the European Ceramic Society, 2018, 38, 2903-2908.	5.7	66
46	Tailoring Sr2Fe1.5Mo0.5O6â^Î^Û with Sc as a new single-phase cathode for proton-conducting solid oxide fuel cells. Science China Materials, 2022, 65, 1485-1494.	6.3	66
47	Tailoring mixed proton-electronic conductivity of BaZrO3 by Y and Pr co-doping for cathode application in protonic SOFCs. Solid State Ionics, 2011, 202, 30-35.	2.7	65
48	High-performance proton-conducting solid oxide fuel cells using the first-generation Sr-doped LaMnO3 cathode tailored with Zn ions. Science China Materials, 2022, 65, 675-682.	6.3	65
49	Solid oxide fuel cells with proton-conducting La0.99Ca0.01NbO4 electrolyte. Electrochimica Acta, 2018, 260, 748-754.	5.2	64
50	Cobalt-free nanofiber cathodes for proton conducting solid oxide fuel cells. Electrochemistry Communications, 2019, 100, 108-112.	4.7	63
51	Triggering interfacial activity of the traditional La _{0.5} Sr _{0.5} MnO ₃ cathode with Co-doping for proton-conducting solid oxide fuel cells. Journal of Materials Chemistry A, 2022, 10, 1726-1734.	10.3	61
52	Magnetic and magneto-optical properties of Fe-doped SrTiO3 films. Applied Physics Letters, 2008, 93, .	3.3	59
53	BaZr0.8Y0.2O3â^Î^NiO Composite Anodic Powders for Proton-Conducting SOFCs Prepared by a Combustion Method. Journal of the Electrochemical Society, 2011, 158, B797.	2.9	59
54	CO ₂ -Resistant Hydrogen Permeation Membranes Based on Doped Ceria and Nickel. Journal of Physical Chemistry C, 2010, 114, 10986-10991.	3.1	58

#	Article	IF	CITATIONS
55	Nanostructuring the electronic conducting La0.8Sr0.2MnO3â~Î cathode for high-performance in proton-conducting solid oxide fuel cells below 600°C. Science China Materials, 2018, 61, 57-64.	6.3	58
56	Liquid-phase synthesis of SrCo0.9Nb0.1O3- \hat{l} cathode material for proton-conducting solid oxide fuel cells. Ceramics International, 2018, 44, 5139-5144.	4.8	57
57	Investigation of SmBaCuCoO5+δ double-perovskite as cathode for proton-conducting solid oxide fuel cells. Materials Research Bulletin, 2010, 45, 1771-1774.	5.2	54
58	Effect of Sm-doping on the hydrogen permeation of Ni–La2Ce2O7 mixed protonic–electronic conductor. International Journal of Hydrogen Energy, 2010, 35, 4508-4511.	7.1	54
59	The effect of oxygen transfer mechanism on the cathode performance based on proton-conducting solid oxide fuel cells. Journal of Materials Chemistry A, 2015, 3, 2207-2215.	10.3	54
60	Chemical stability and hydrogen permeation performance of Ni–BaZr0.1Ce0.7Y0.2O3â~δin an H2S-containing atmosphere. Journal of Power Sources, 2008, 183, 126-132.	7.8	53
61	Fabrication and characterization of easily sintered and stable anode-supported proton-conducting membranes. Journal of Membrane Science, 2009, 336, 1-6.	8.2	53
62	High-performing proton-conducting solid oxide fuel cells with triple-conducting cathode of Pr0.5Ba0.5(Co0.7Fe0.3)O3-δtailored with W. International Journal of Hydrogen Energy, 2022, 47, 1947-1953.	7.1	52
63	Preparation of an extremely dense BaCe0.8Sm0.2O3 \hat{a} ° \hat{l} ′thin membrane based on an in situ reaction. Electrochemistry Communications, 2008, 10, 1005-1007.	4.7	48
64	Tailoring a LaMnO ₃ cathode for proton-conducting solid oxide fuel cells: integration of high performance and excellent stability. Journal of Materials Chemistry A, 2021, 9, 12553-12559.	10.3	47
65	Improving the performance of the Ba0.5Sr0.5Co0.8Fe0.2O3- cathode for proton-conducting SOFCs by microwave sintering. Ceramics International, 2019, 45, 20994-20998.	4.8	45
66	High performance ceria–bismuth bilayer electrolyte low temperature solid oxide fuel cells (LT-SOFCs) fabricated by combining co-pressing with drop-coating. Journal of Materials Chemistry A, 2015, 3, 10219-10224.	10.3	44
67	Density functional theory calculations for cathode materials of proton-conducting solid oxide fuel cells: A mini-review. Electrochemistry Communications, 2021, 129, 107072.	4.7	43
68	PrBaCo2-xTaxO5+δ based composite materials as cathodes for proton-conducting solid oxide fuel cells with high CO2 resistance. International Journal of Hydrogen Energy, 2020, 45, 31017-31026.	7.1	41
69	Improvement of the catalytic properties of porous lanthanum manganite for the oxygen reduction reaction by partial substitution of strontium for lanthanum. Electrochemistry Communications, 2021, 124, 106964.	4.7	41
70	Reversible solid oxide fuel cells (R-SOFCs) with chemically stable proton-conducting oxides. Solid State lonics, 2015, 275, 101-105.	2.7	37
71	Optimization of sintering temperature for SOFCs by a co-firing method. Ceramics International, 2020, 46, 6987-6990.	4.8	36
72	Perovskite ceramic oxide as an efficient electrocatalyst for nitrogen fixation. International Journal of Hydrogen Energy, 2021, 46, 10293-10302.	7.1	36

#	Article	IF	CITATIONS
73	A stable La1.95Ca0.05Ce2O7â^î´ as the electrolyte for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2011, 196, 5840-5843.	7.8	35
74	A novel in situ diffusion strategy to fabricate high performance cathodes for low temperature proton-conducting solid oxide fuel cells. Journal of Materials Chemistry A, 2018, 6, 10411-10420.	10.3	34
75	Proton-conducting solid oxide fuel cells prepared by a single step co-firing process. Journal of Power Sources, 2009, 191, 428-432.	7.8	33
76	Screen-printed BaCe0.8Sm0.2O3â~δthin membrane solid oxide fuel cells with surface modification by spray coating. Journal of Alloys and Compounds, 2009, 473, 48-52.	5 . 5	33
77	Novel Ba0.5Sr0.5(Co0.8Fe0.2)1â^'xTixO3â^'Î^ (x=0, 0.05, and 0.1) cathode materials for proton-conducting solid oxide fuel cells. Solid State Ionics, 2012, 214, 1-5.	2.7	32
78	Electrode tailoring improves the intermediate temperature performance of solid oxide fuel cells based on a Y and Pr co-doped barium zirconate proton conducting electrolyte. RSC Advances, 2011, 1, 1183 .	3.6	31
79	Y and Ni Co-Doped BaZrO ₃ as a Proton-Conducting Solid Oxide Fuel Cell Electrolyte Exhibiting Superior Power Performance. Journal of the Electrochemical Society, 2015, 162, F1498-F1503.	2.9	30
80	A novel composite cathode Er0.4Bi1.6O3–Pr0.5Ba0.5MnO3â^Î for ceria-bismuth bilayer electrolyte high performance low temperature solid oxide fuel cells. Journal of Power Sources, 2016, 301, 306-311.	7.8	30
81	A non-polluting method for rapidly purifying uranium-containing wastewater and efficiently recovering uranium through electrochemical mineralization and oxidative roasting. Journal of Hazardous Materials, 2021, 416, 125885.	12.4	30
82	A novel CO2-tolerant Ba0.5Sr0.5Co0.8Fe0.1Ta0.1O3-δÂcathode with high performance for proton-conducting solid oxide fuel cells. International Journal of Hydrogen Energy, 2021, 46, 33561-33571.	7.1	30
83	Enhancing the performance of traditional La2NiO4+x cathode for proton-conducting solid oxide fuel cells with Zn-doping. Ceramics International, 2022, 48, 19626-19632.	4.8	30
84	Influence of anode pore forming additives on the densification of supported BaCe0.7Ta0.1Y0.2O3â^Î electrolyte membranes based on a solid state reaction. Journal of the European Ceramic Society, 2009, 29, 2567-2573.	5.7	29
85	Influence of fabrication process of Ni–BaCe0.7Zr0.1Y0.2O3â~δ cermet on the hydrogen permeation performance. Journal of Alloys and Compounds, 2010, 508, L5-L8.	5. 5	29
86	Modification of a first-generation solid oxide fuel cell cathode with Co3O4 nanocubes having selectively exposed crystal planes. Materials for Renewable and Sustainable Energy, 2019, 8, 1.	3.6	29
87	Defect engineering for electrocatalytic nitrogen reduction reaction at ambient conditions. Sustainable Materials and Technologies, 2021, 27, e00229.	3.3	27
88	Mo-doping allows high performance for a perovskite cathode applied in proton-conducting solid oxide fuel cells. Sustainable Energy and Fuels, 2021, 5, 4261-4267.	4.9	27
89	A strategy of tailoring stable electrolyte material for high performance proton-conducting solid oxide fuel cells (SOFCs). Electrochemistry Communications, 2016, 72, 19-22.	4.7	26
90	In SituFabrication of a Supported Ba3Ca1.18Nb1.82O9â~ÎMembrane Electrolyte for a Proton-Conducting SOFC. Journal of the American Ceramic Society, 2008, 91, 3806-3809.	3.8	25

#	Article	IF	CITATIONS
91	Fabrication of cathode supported solid oxide fuel cell by multi-layer tape casting and co-firing method. International Journal of Hydrogen Energy, 2009, 34, 7789-7794.	7.1	25
92	A chemically stable electrolyte with a novel sandwiched structure for proton-conducting solid oxide fuel cells (SOFCs). Electrochemistry Communications, 2013, 36, 42-45.	4.7	25
93	Stable BaCe0.5Zr0.3Y0.16Zn0.04O3â^Î thin membrane prepared by in situ tape casting for proton-conducting solid oxide fuel cells. Journal of Power Sources, 2009, 188, 343-346.	7.8	23
94	Fabrication of one-step co-fired proton-conducting solid oxide fuel cells with the assistance of microwave sintering. Journal of the European Ceramic Society, 2018, 38, 5620-5624.	5.7	22
95	H2S poisoning and regeneration of Ni–BaZr0.1Ce0.7Y0.2O3â^Î at intermediate temperature. Journal of Alloys and Compounds, 2009, 475, 935-939.	5.5	20
96	Cobalt-free LaNi0.4Zn0.1Fe0.5O3-δas a cathode for solid oxide fuel cells using proton-conducting electrolyte. International Journal of Hydrogen Energy, 2021, 46, 38482-38489.	7.1	20
97	On the delamination of air electrodes of solid oxide electrolysis cells: A mini-review. Electrochemistry Communications, 2022, 137, 107267.	4.7	20
98	Ferromagnetism in single crystal and nanocomposite Sr(Ti,Fe)O3 epitaxial films. Journal of Materials Chemistry, 2011, 21, 10364.	6.7	19
99	Carbon Monoxideâ€Templated Synthesis of Coralâ€Like Clean PtPd Nanochains as Efficient Oxygen Reduction Catalyst. ChemElectroChem, 2018, 5, 2403-2408.	3.4	18
100	Improving the sinterability of CeO2 by using plane-selective nanocubes. Journal of the European Ceramic Society, 2019, 39, 4429-4434.	5.7	15
101	Orientation control and self-assembled nanopyramid structure of LaFeO3 films epitaxially grown on SrTiO3(001) substrates. Applied Physics Letters, 2009, 95, 121908.	3.3	14
102	A new Sc-doped La0.5Sr0.5MnO3-δ cathode allows high performance for proton-conducting solid oxide fuel cells. Sustainable Materials and Technologies, 2022, 32, e00409.	3.3	13
103	The role of deposition conditions on the structure and magnetic properties of SrTi1-xFexO3 films. Journal of Applied Physics, 2012, 111, 07A918.	2.5	11
104	LaNi _{0.6} Fe _{0.4} O _{3â^'<i>î´</i>} as a Promising Cathode for Stable Protonâ€conducting Solid Oxide Fuel Cells. Fuel Cells, 2018, 18, 561-565.	2.4	11
105	Ambient electrosynthesis of NH3 from N2 using Bi-doped CeO2 cube as electrocatalyst. International Journal of Hydrogen Energy, 2021, 46, 31523-31532.	7.1	11
106	Enhancement of the magneto-optical performance of Sr(Ti0.6â^'xGaxFe0.4)O3 perovskite films by Ga substitution. Applied Physics Letters, 2011, 98, 231909.	3.3	10
107	Steam Electrolysis by Proton-Conducting Solid Oxide Electrolysis Cells (SOECs) with Chemically Stable BaZrO ₃ -Based Electrolytes. ECS Transactions, 2015, 68, 3387-3393.	0.5	9
108	Evaluation of potential reaction between BaZr0.8Y0.2O3-δ ceramics and Pt at high temperatures. Ceramics International, 2019, 45, 22383-22387.	4.8	9

#	Article	IF	CITATIONS
109	A new Pr0.25Nd0.25Sr0.5MnO3-δ cathode for proton-conducting solid oxide fuel cells. Ceramics International, 2022, 48, 11872-11878.	4.8	9
110	Yttrium and Nickel Co-Doped BaZrO ₃ as a Proton-Conducting Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells. ECS Transactions, 2015, 68, 503-508.	0.5	8
111	Tailoring BaCe0.8Y0.2O3 proton-conducting oxide with U ions for an enhanced stability. Ceramics International, 2022, 48, 17987-17993.	4.8	8
112	Evidence for in-situ electric-induced uranium incorporation into magnetite crystal in acidic wastewater. Separation and Purification Technology, 2022, 291, 120957.	7.9	8
113	Electrospun La0.5Sr0.5Mn0.875Zn0.125O3-δ nano-powders as a single-phase cathode for proton-conducting solid oxide fuel cells. Ceramics International, 2022, 48, 25228-25235.	4.8	8
114	Hollow La0.5Sr0.5MnO3 nanospheres as an electrocatalyst for the oxygen reduction reaction in alkaline media. International Journal of Hydrogen Energy, 2020, 45, 12514-12524.	7.1	7
115	Research Progress in the Electrolyte Materials for Protonic Ceramic Membrane Fuel Cells. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2009, 25, 1-7.	1.3	7
116	Synthesis of SmBaCo2O6â^δ powder by the combustion process using Co3O4 as precursor. Journal of Alloys and Compounds, 2009, 481, L40-L42.	5.5	6
117	Optical and magneto-optical properties of Co-doped CeO2â ʾĨ films in the 0.5 to 4 eV range. Journal of Applied Physics, 2014, 115, .	2.5	6
118	Superior Electromagnetic Shielding and Mechanical Buffering Achieved by Alternating Conductive and Porous Supramolecular Networks. Advanced Engineering Materials, 2022, 24, .	3.5	6
119	Advancing cathodic electrocatalysis <i>via</i> an <i>in situ</i> generated dense active interlayer based on CuO ₅ pyramid-structured Sm ₂ Ba _{1.33} Ce _{0.67} Cu ₃ O ₉ . Journal of Materials Chemistry A, 2022, 10, 15949-15959.	10.3	6
120	Mixed-cation designs of magnetic perovskites for Faraday rotation at IR wavelengths. Journal of Applied Physics, 2007, 101, 09C524.	2.5	5
121	Spectral origins of high Faraday rotation at 1.5- $\hat{1}$ /4m wavelength from Fe and Co in SrTiO ₃ films. Journal of Applied Physics, 2011, 109, 07B761.	2.5	5
122	Regulation of Structure and Ionic Intercalation of Colloidal Nanocrystal Assembly. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 229-237.	4.7	5
123	Tailoring sintering step allows high performance for solid oxide fuel cells prepared by a tri-layer co-firing process. Materials Research Bulletin, 2017, 93, 42-46.	5.2	4
124	Proton-conducting electrolyte materials. , 2020, , 81-111.		4
125	Templates as Shadow Masks to Tune the Magnetic Anisotropy in Nanostructured CoCrPt/Ti Bilayer Films. Advanced Materials Interfaces, 2015, 2, 1400551.	3.7	3
126	Exploring Mixed Protonic/Electronic Conducting Oxides as Cathode Materials for Intermediate Temperature SOFCs Based on Proton Conducting Electrolytes. ECS Transactions, 2011, 35, 2305-2311.	0.5	2

#	Article	IF	CITATIONS
127	Electrical Properties of Ba ₃ Ca _{1.18} Nb _{1.82} O _{9-î´} Proton-Conducting Electrolyte Prepared by a Combustion Method. ECS Transactions, 2013, 57, 1069-1075.	0.5	2
128	Institute of Metal Research, Chinese Academy of Sciences: aiming to achieve breakthroughs in the development of materials. National Science Review, 2017, 4, 269-282.	9.5	2
129	Immobilizing U cations in Sr2Fe2O6-δas a new cathode for proton-conducting solid oxide fuel cells. Ceramics International, 2022, 48, 28751-28758.	4.8	2
130	Effect of Pre-sintering Treatment of Anode Substrate on the Densification and Flatness of YSZ Electrolyte by Suspension Spray. ECS Transactions, 2009, 25, 543-551.	0.5	1
131	A Tri-Layer Proton-Conducting Electrolyte for Chemically Stable Operation in Solid Oxide Fuel Cells. ECS Transactions, 2013, 57, 1037-1044.	0.5	1
132	Nanostructured Cathodes: Tailoring the Cathode-Electrolyte Interface with Nanoparticles for Boosting the Solid Oxide Fuel Cell Performance of Chemically Stable Proton-Conducting Electrolytes (Small 32/2018). Small, 2018, 14, 1870146.	10.0	1
133	Exploring the Effect of NiO Addition to La0.99Ca0.01NbO4 Proton-Conducting Ceramic Oxides. Coatings, 2021, 11, 562.	2.6	1
134	Performance of Solid Oxide Fuel Cells with In-Doped BaZrO3 Electrolyte Films on Different Anode Substrates. ECS Transactions, 2011, 35, 797-804.	0.5	0
135	Proton-Responsive Nanomaterials for Fuel Cells. Springer Series in Materials Science, 2020, , 245-267.	0.6	0