
Xiaoliang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/214500/publications.pdf Version: 2024-02-01

XIAOLIANC LL

#	Article	IF	CITATIONS
1	An optimization problem in heat conduction with volume constraint and double obstacles. Discrete and Continuous Dynamical Systems, 2022, .	0.9	0
2	Flammability and Explosion Risk of Post-explosion CH ₄ /air and CH ₄ /coal dust/air Mixtures. Combustion Science and Technology, 2021, 193, 1279-1292.	2.3	13
3	High microbial diversity stabilizes the responses of soil organic carbon decomposition to warming in the subsoil on the Tibetan Plateau. Global Change Biology, 2021, 27, 2061-2075.	9.5	77
4	Effects of Acid Sulfate and Chloride Ion on the Pore Structure and Mechanical Properties of Sandstone Under Dynamic Loading. Rock Mechanics and Rock Engineering, 2021, 54, 6105-6121.	5.4	29
5	Soil pH drives the phylogenetic clustering of the arbuscular mycorrhizal fungal community across subtropical and tropical pepper fields of China. Applied Soil Ecology, 2021, 165, 103978.	4.3	8
6	Tobramycin suppresses HUWE1 degradation to control MCLâ€1 stability during tumour development. Clinical and Experimental Pharmacology and Physiology, 2020, 47, 1600-1610.	1.9	3
7	Linkages between changes in plant and mycorrhizal fungal community composition at high versus low elevation in alpine ecosystems. Environmental Microbiology Reports, 2020, 12, 229-240.	2.4	10
8	CFTR mutation compromises spermatogenesis by enhancing miR-15b maturation and suppressing its regulatory target CDC25Aâ€. Biology of Reproduction, 2019, 101, 50-62.	2.7	10
9	Large elevation and small host plant differences in the arbuscular mycorrhizal communities of montane and alpine grasslands on the Tibetan Plateau. Mycorrhiza, 2018, 28, 605-619.	2.8	19
10	Land use alters arbuscular mycorrhizal fungal communities and their potential role in carbon sequestration on the Tibetan Plateau. Scientific Reports, 2017, 7, 3067.	3.3	39
11	<scp>I</scp> nner <scp>M</scp> ongolian steppe arbuscular mycorrhizal fungal communities respond more strongly to water availability than to nitrogen fertilization. Environmental Microbiology, 2015, 17, 3051-3068.	3.8	62
12	The key factor limiting plant growth in cold and humid alpine areas also plays a dominant role in plant carbon isotope discrimination. Frontiers in Plant Science, 2015, 6, 961.	3.6	20
13	Contribution of arbuscular mycorrhizal fungi of sedges to soil aggregation along an altitudinal alpine grassland gradient on the <scp>T</scp> ibetan <scp>P</scp> lateau. Environmental Microbiology, 2015, 17, 2841-2857.	3.8	64
14	Molecular diversity of arbuscular mycorrhizal fungi associated with two co-occurring perennial plant species on a Tibetan altitudinal gradient. Mycorrhiza, 2014, 24, 95-107.	2.8	73
15	Soil microbial community structure and activity along a montane elevational gradient on the Tibetan Plateau. European Journal of Soil Biology, 2014, 64, 6-14.	3.2	104
16	Effect of root exudates on beneficial microorganisms—evidence from a continuous soybean monoculture. Plant Ecology, 2012, 213, 1883-1892.	1.6	54
17	Trends and correlation characteristics of coal mine gas explosion accident factors: a case study. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-15.	2.3	2