
Daniele Hauser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2144969/publications.pdf Version: 2024-02-01

DANIELE HALISED

#	Article	IF	CITATIONS
1	On the wave age dependence of wind stress over pure wind seas. Journal of Geophysical Research, 2003, 108, .	3.3	269
2	Altimetry for the future: Building on 25 years of progress. Advances in Space Research, 2021, 68, 319-363.	2.6	119
3	SWIM: The First Spaceborne Wave Scatterometer. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 3000-3014.	6.3	101
4	New Observations From the SWIM Radar On-Board CFOSAT: Instrument Validation and Ocean Wave Measurement Assessment. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 5-26.	6.3	88
5	RESSAC: a new airborne FM/CW radar ocean wave spectrometer. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30, 981-995.	6.3	62
6	SWIMSAT: A Real-Aperture Radar to Measure Directional Spectra of Ocean Waves from Space—Main Characteristics and Performance Simulation. Journal of Atmospheric and Oceanic Technology, 2001, 18, 421-437.	1.3	57
7	Importance of the sea surface curvature to interpret the normalized radar cross section. Journal of Geophysical Research, 2007, 112, .	3.3	49
8	Assimilation of Directional Wave Spectra in the Wave Model WAM: An Impact Study from Synthetic Observations in Preparation for the SWIMSAT Satellite Mission. Journal of Atmospheric and Oceanic Technology, 2006, 23, 448-463.	1.3	38
9	Directional wave measurements from three wave sensors during the FETCH experiment. Journal of Geophysical Research, 2003, 108, .	3.3	37
10	New Directional Wave Satellite Observations: Towards Improved Wave Forecasts and Climate Description in Southern Ocean. Geophysical Research Letters, 2021, 48, e2020GL091187.	4.0	26
11	KuROS: A New Airborne Ku-Band Doppler Radar for Observation of Surfaces. Journal of Atmospheric and Oceanic Technology, 2014, 31, 2223-2245.	1.3	19
12	Benefits of the Adaptive Algorithm for Retracking Altimeter Nadir Echoes: Results From Simulations and CFOSAT/SWIM Observations. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 9927-9940.	6.3	19
13	Combined analysis of the radar cross-section modulation due to the long ocean waves around 14° and 34° incidence: Implication for the hydrodynamic modulation. Journal of Geophysical Research, 1996, 101, 25833-25846.	3.3	17
14	Overview of the CFOSAT mission. , 2016, , .		17
15	Directional and Frequency Spread of Surface Ocean Waves From SWIM Measurements. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017220.	2.6	15
16	Quasi-Gaussian probability density function of sea wave slopes from near nadir Ku-band radar observations. Remote Sensing of Environment, 2018, 217, 86-100.	11.0	14
17	The Wide Swath Significant Wave Height: An Innovative Reconstruction of Significant Wave Heights From CFOSAT's SWIM and Scatterometer Using Deep Learning. Geophysical Research Letters, 2021, 48, e2020GL091276.	4.0	12
18	Measuring ocean total surface current velocity with the KuROS and KaRADOC airborne near-nadir Doppler radars: a multi-scale analysis in preparation for the SKIM mission. Ocean Science, 2020, 16, 1399-1429.	3.4	11

DANIELE HAUSER

#	Article	IF	CITATIONS
19	On the Assimilation of CFOSAT Wave Data in the Wave Model MFWAM : Verification Phase. , 2019, , .		10
20	A New Platform for the Determination of Air–Sea Fluxes (OCARINA): Overview and First Results. Journal of Atmospheric and Oceanic Technology, 2014, 31, 1043-1062.	1.3	9
21	Seaâ€lce Detection From Nearâ€Nadir Kuâ€Band Echoes From CFOSAT/SWIM Scatterometer. Earth and Space Science, 2022, 9, .	2.6	9
22	Directional wave spectra at the regional scale with the KuROS airborne radar: comparisons with models. Ocean Dynamics, 2019, 69, 679-699.	2.2	7
23	Airâ€Sea Turbulent Fluxes From a Waveâ€Following Platform During Six Experiments at Sea. Journal of Geophysical Research: Oceans, 2019, 124, 4290-4321.	2.6	5
24	Perspectives for directional spectra assimilation: Results from a study based on joint assimilation of CFOSAT synthetic wave spectra and observed SAR spectra from Sentinel-1A. , 2016, , .		4
25	Directional and Frequency Spread of Surface Ocean Waves from CFOSAT/SWIM Measurements. , 2021, , .		4
26	Up-to-Downwave Asymmetry of the CFOSAT SWIM Fluctuation Spectrum for Wave Direction Ambiguity Removal. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-12.	6.3	3
27	Evolutions and Improvements in CFOSAT SWIM Products. , 2021, , .		3
28	Ocean Waves in the South Pacific: Complementarity of SWIM and SAR Observations. Earth and Space Science, 2022, 9, .	2.6	3
29	CAL/VAL Phase for the Swim Instrument Onboard cFOSAT. , 2020, , .		1
30	Speckle Noise Spectrum at Near-Nadir Incidence Angles for a Time-Varying Sea Surface. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-20.	6.3	0