Wen-Xin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2144446/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methane budget estimates in Finland from the CarbonTracker Europe-CH ₄ data assimilation system. Tellus, Series B: Chemical and Physical Meteorology, 2022, 71, 1565030.	0.8	11
2	Nitrogen transport in a tundra landscape: the effects of early and late growing season lateral N inputs on arctic soil and plant N pools and N2O fluxes. Biogeochemistry, 2022, 157, 69-84.	1.7	9
3	A strong mitigation scenario maintains climate neutrality of northern peatlands. One Earth, 2022, 5, 86-97.	3.6	14
4	Water Migration and Segregated Ice Formation in Frozen Ground: Current Advances and Future Perspectives. Frontiers in Earth Science, 2022, 10, .	0.8	15
5	Modelling impacts of lateral N flows and seasonal warming on an arctic footslope ecosystem N budget and N2O emissions based on species-level responses. Biogeochemistry, 2022, 158, 195-213.	1.7	4
6	Assessment of long-term water stress for ecosystems across China using the maximum entropy production theory-based evapotranspiration product. Journal of Cleaner Production, 2022, 349, 131414.	4.6	3
7	Allocation of ecological water rights considering ecological networks in arid watersheds: A framework and case study of Tarim River basin. Agricultural Water Management, 2022, 267, 107636.	2.4	7
8	Storage, patterns, and environmental controls of soil organic carbon stocks in the permafrost regions of the Northern Hemisphere. Science of the Total Environment, 2022, 828, 154464.	3.9	14
9	Warming and Increased Respiration Have Transformed an Alpine Steppe Ecosystem on the Tibetan Plateau From a Carbon Dioxide Sink Into a Source. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	5
10	Direct and Legacy Effects of Spring Temperature Anomalies on Seasonal Productivity in Northern Ecosystems. Remote Sensing, 2022, 14, 2007.	1.8	5
11	Modeling Panâ€Arctic Peatland Carbon Dynamics Under Alternative Warming Scenarios. Geophysical Research Letters, 2022, 49, .	1.5	7
12	Improved soil hydrological modeling with the implementation of salt-induced freezing point depression in CoupModel: Model calibration and validation. Journal of Hydrology, 2021, 596, 125693.	2.3	12
13	Assessing glacier retreat and its impact on water resources in a headwater of Yangtze River based on CMIP6 projections. Science of the Total Environment, 2021, 765, 142774.	3.9	38
14	Flood Monitoring in Rural Areas of the Pearl River Basin (China) Using Sentinel-1 SAR. Remote Sensing, 2021, 13, 1384.	1.8	38
15	Responses of Arctic cyclones to biogeophysical feedbacks under future warming scenarios in a regional Earth system model. Environmental Research Letters, 2021, 16, 064076.	2.2	5
16	Projections of thermal growing season indices over China under global warming of 1.5 ŰC and 2.0 ŰC. Science of the Total Environment, 2021, 781, 146774.	3.9	5
17	Changes in different land cover areas and NDVI values in northern latitudes from 1982 to 2015. Advances in Climate Change Research, 2021, 12, 456-465.	2.1	16
18	Drivers of the water use efficiency changes in China during 1982–2015. Science of the Total Environment, 2021, 799, 149145.	3.9	36

WEN-XIN ZHANG

#	Article	IF	CITATIONS
19	Spatiotemporal Changes in Mulberry-Dyke-Fish Ponds in the Guangdong-Hong Kong-Macao Greater Bay Area over the Past 40 Years. Water (Switzerland), 2021, 13, 2953.	1.2	3
20	Quantifying changes and drivers of runoff in the Kaidu River Basin associated with plausible climate scenarios. Journal of Hydrology: Regional Studies, 2021, 38, 100968.	1.0	6
21	Coupled water transport and heat flux in seasonally frozen soils: uncertainties identification in multi-site calibration. Environmental Earth Sciences, 2020, 79, 1.	1.3	3
22	The Interplay of Recent Vegetation and Sea Ice Dynamics—Results From a Regional Earth System Model Over the Arctic. Geophysical Research Letters, 2020, 47, e2019GL085982.	1.5	7
23	Soil moisture and hydrology projections of the permafrost region – a model intercomparison. Cryosphere, 2020, 14, 445-459.	1.5	85
24	The Global Methane Budget 2000–2017. Earth System Science Data, 2020, 12, 1561-1623.	3.7	1,199
25	Future projections of cyclone activity in the Arctic for the 21st century from regional climate models (Arctic-CORDEX). Global and Planetary Change, 2019, 182, 103005.	1.6	32
26	Model-data fusion to assess year-round CO2 fluxes for an arctic heath ecosystem in West Greenland (69°N). Agricultural and Forest Meteorology, 2019, 272-273, 176-186.	1.9	23
27	Global parameters sensitivity analysis of modeling water, energy and carbon exchange of an arid agricultural ecosystem. Agricultural and Forest Meteorology, 2019, 271, 295-306.	1.9	13
28	Trends of intense cyclone activity in the Arctic from reanalyses data and regional climate models (Arctic-CORDEX). IOP Conference Series: Earth and Environmental Science, 2019, 231, 012003.	0.2	3
29	Simulation of dynamical interactions between soil freezing/thawing and salinization for improving water management in cold/arid agricultural region. Geoderma, 2019, 338, 325-342.	2.3	42
30	Processâ€Oriented Modeling of a High Arctic Tundra Ecosystem: Longâ€Term Carbon Budget and Ecosystem Responses to Interannual Variations of Climate. Journal of Geophysical Research C: Biogeosciences, 2018, 123, 1178-1196.	1.3	12
31	Cyclone Activity in the Arctic From an Ensemble of Regional Climate Models (Arctic CORDEX). Journal of Geophysical Research D: Atmospheres, 2018, 123, 2537-2554.	1.2	46
32	Modelling present and future permafrost thermal regimes in Northeast Greenland. Cold Regions Science and Technology, 2018, 146, 199-213.	1.6	37
33	Selfâ€Amplifying Feedbacks Accelerate Greening and Warming of the Arctic. Geophysical Research Letters, 2018, 45, 7102-7111.	1.5	35
34	Patchy field sampling biases understanding of climate change impacts across the Arctic. Nature Ecology and Evolution, 2018, 2, 1443-1448.	3.4	112
35	Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 430-446.	1.3	47
36	Fertilization effects on biomass production, nutrient leaching and budgets in four stand development stages of short rotation forest poplar. Forest Ecology and Management, 2017, 397, 18-26.	1.4	17

WEN-XIN ZHANG

#	Article	IF	CITATIONS
37	Evaluation of air–soil temperature relationships simulated by land surface models during winter across the permafrost region. Cryosphere, 2016, 10, 1721-1737.	1.5	38
38	Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area. Cryosphere, 2016, 10, 287-306.	1.5	29
39	Simulated high-latitude soil thermal dynamics during the past 4 decades. Cryosphere, 2016, 10, 179-192.	1.5	17
40	Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009. Global Biogeochemical Cycles, 2016, 30, 1015-1037.	1.9	116
41	Rising methane emissions from northern wetlands associated with sea ice decline. Geophysical Research Letters, 2015, 42, 7214-7222.	1.5	20
42	Assessment of model estimates of land-atmosphere CO ₂ exchange across Northern Eurasia. Biogeosciences, 2015, 12, 4385-4405.	1.3	25
43	Biogeophysical feedbacks enhance the Arctic terrestrial carbon sink in regional Earth system dynamics. Biogeosciences, 2014, 11, 5503-5519.	1.3	53
44	Tundra shrubification and tree-line advance amplify arctic climate warming: results from an individual-based dynamic vegetation model. Environmental Research Letters, 2013, 8, 034023.	2.2	107
45	The altered drivers of evapotranspiration trends around the recent warming hiatus in China. International Journal of Climatology, 0, , .	1.5	0
46	Projection of Precipitation Extremes and Flood Risk in the China–Pakistan Economic Corridor. Frontiers in Environmental Science, 0, 10, .	1.5	2