Vadim B Krylov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2144394/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of Glycosyltransferase 8 Family Members as Xylosyltransferases Acting on O-Glucosylated Notch Epidermal Growth Factor Repeats. Journal of Biological Chemistry, 2010, 285, 1582-1586.	1.6	112
2	Organic and hybrid systems: from science to practice. Mendeleev Communications, 2017, 27, 425-438.	0.6	86
3	Molecular Cloning of a Xylosyltransferase That Transfers the Second Xylose to O-Glucosylated Epidermal Growth Factor Repeats of Notch. Journal of Biological Chemistry, 2012, 287, 2739-2748.	1.6	76
4	Influence of Fucoidans on Hemostatic System. Marine Drugs, 2013, 11, 2444-2458.	2.2	70
5	Synthesis of Multivalent Carbohydrate entered Glycoclusters as Nanomolar Ligands of the Bacterial Lectin LecA from <i>Pseudomonas aeruginosa</i> . Chemistry - A European Journal, 2013, 19, 9272-9285.	1.7	59
6	Acid-promoted synthesis of per-O-sulfated fucooligosaccharides related to fucoidan fragments. Carbohydrate Research, 2011, 346, 540-550.	1.1	54
7	Pyranosideâ€intoâ€Furanoside Rearrangement: New Reaction in Carbohydrate Chemistry and Its Application in Oligosaccharide Synthesis. Chemistry - A European Journal, 2014, 20, 16516-16522.	1.7	53
8	Convergent synthesis of isomeric heterosaccharides related to the fragments of galactomannan from Aspergillus fumigatus. Organic and Biomolecular Chemistry, 2015, 13, 3255-3267.	1.5	50
9	Novel mouse monoclonal antibodies specifically recognizing β-(1→3)-D-glucan antigen. PLoS ONE, 2019, 14, e0215535.	1.1	42
10	Expression and biochemical characterization and substrate specificity of the fucoidanase from <i>Formosa algae</i> . Glycobiology, 2017, 27, 254-263.	1.3	39
11	Biotinylated Oligo-α-(1 → 4)- <scp>d</scp> -galactosamines and Their N-Acetylated Derivatives: α-Stereoselective Synthesis and Immunology Application. Journal of the American Chemical Society, 2020, 142, 1175-1179.	6.6	35
12	Efficient acid-promoted per-O-sulfation of organic polyols. Tetrahedron Letters, 2008, 49, 5877-5879.	0.7	34
13	Novel mouse monoclonal antibodies specifically recognize Aspergillus fumigatus galactomannan. PLoS ONE, 2018, 13, e0193938.	1.1	34
14	The synthesis of heterosaccharides related to the fucoidan from Chordaria flagelliformis bearing an α-‹scp>l‹/scp>-fucofuranosyl unit. Organic and Biomolecular Chemistry, 2016, 14, 598-611.	1.5	33
15	Chemical Synthesis and Application of Biotinylated Oligo-α-(1 → 3)- <scp>d</scp> -Glucosides To Study the Antibody and Cytokine Response against the Cell Wall I±-(1 → 3)- <scp>d</scp> -Glucan of <i>Aspergillus fumigatus</i> . Journal of Organic Chemistry, 2018, 83, 12965-12976.	1.7	32
16	Synthesis of oligosaccharides related to galactomannans from <i>Aspergillus fumigatus</i> and their NMR spectral data. Organic and Biomolecular Chemistry, 2018, 16, 1188-1199.	1.5	31
17	The Use of Pyranoside-into-Furanoside Rearrangement and Controlled O(5) → O(6) Benzoyl Migration as the Basis of a Synthetic Strategy To Assemble (1→5)- and (1→6)-Linked Galactofuranosyl Chains. Organic Letters, 2016, 18, 5504-5507.	2.4	30
18	Lysozyme's lectin-like characteristics facilitates its immune defense function. Quarterly Reviews of Biophysics 2017 50, e9	2.4	29

VADIM B KRYLOV

#	Article	IF	CITATIONS
19	Reinvestigation of carbohydrate specificity of EB-A2 monoclonal antibody used in the immune detection of Aspergillus fumigatus galactomannan. Heliyon, 2019, 5, e01173.	1.4	29
20	Definitive Structural Assessment of Enterococcal Diheteroglycan. Chemistry - A European Journal, 2015, 21, 1749-1754.	1.7	26
21	Preliminary structural characterization, anti-inflammatory and anticoagulant activities of chondroitin sulfates from marine fish cartilage. Russian Chemical Bulletin, 2011, 60, 746-753.	0.4	25
22	Fucoidans as a platform for new anticoagulant drugs discovery. Pure and Applied Chemistry, 2014, 86, 1365-1375.	0.9	24
23	Potential of Chemically Synthesized Oligosaccharides To Define the Carbohydrate Moieties of the Fungal Cell Wall Responsible for the Human Immune Response, Using Aspergillus fumigatus Galactomannan as a Model. MSphere, 2020, 5, .	1.3	23
24	The Pyranoside-into-Furanoside Rearrangement of Alkyl Glycosides: Scope and Limitations. Synlett, 2016, 27, 1659-1664.	1.0	22
25	Pyranosideâ€intoâ€Furanoside Rearrangement of 4â€Pentenyl Glycosides in the Synthesis of a Tetrasaccharideâ€Related to Galactan I of <i>Klebsiella pneumoniae</i> . European Journal of Organic Chemistry, 2017, 2017, 710-718.	1.2	20
26	Stereoselective α-Glycosylation with 3-O-Acetylated d-Gluco Donors. Synlett, 2006, 2006, 921-923.	1.0	17
27	Synthesis, NMR and Conformational Studies of Fucoidan Fragments, 8: Convergent Synthesis of Branched and Linear Oligosaccharides. Synthesis, 2006, 2006, 4017-4031.	1.2	17
28	Monoclonal Antibody AP3 Binds Galactomannan Antigens Displayed by the Pathogens Aspergillus flavus, A. fumigatus, and A. parasiticus. Frontiers in Cellular and Infection Microbiology, 2019, 9, 234.	1.8	17
29	Convergent Synthesis of Oligosaccharides Structurally Related to Galactan I and Galactan II of <i>Klebsiella Pneumoniae</i> and their Use in Screening of Antibody Specificity. European Journal of Organic Chemistry, 2019, 2019, 4226-4232.	1.2	16
30	Immunobiological Activity of Synthetically Prepared Immunodominant Galactomannosides Structurally Mimicking Aspergillus Galactomannan. Frontiers in Immunology, 2017, 8, 1273.	2.2	15
31	Study of the Carbohydrate Specificity of Antibodies Against Aspergillus fumigatus Using the Library of Synthetic Mycoantigens. Russian Journal of Bioorganic Chemistry, 2018, 44, 80-89.	0.3	15
32	Recent advances in the synthesis of fungal antigenic oligosaccharides. Pure and Applied Chemistry, 2017, 89, 885-898.	0.9	13
33	Importance of Candida Antigenic Factors: Structure-Driven Immunomodulation Properties of Synthetically Prepared Mannooligosaccharides in RAW264.7 Macrophages. Frontiers in Cellular and Infection Microbiology, 2019, 9, 378.	1.8	13
34	Synthetic carbohydrate based anti-fungal vaccines. Drug Discovery Today: Technologies, 2020, 35-36, 35-43.	4.0	13
35	Synthetic Oligomers Mimicking Capsular Polysaccharide Diheteroglycan are Potential Vaccine Candidates against Encapsulated <i>Enterococcal</i> Infections. ACS Infectious Diseases, 2020, 6, 1816-1826.	1.8	12
36	Characterization of a new α-l-fucosidase isolated from Fusarium proliferatum LE1 that is regioselective to α-l-(1Â→Â4)-l-fucosidic linkage in the hydrolysis of α-l-fucobiosides. Biochimie, 2017, 132, 54-65.	1.3	11

VADIM B KRYLOV

#	Article	IF	CITATIONS
37	Nanomedical Relevance of the Intermolecular Interaction Dynamics—Examples from Lysozymes and Insulins. ACS Omega, 2019, 4, 4206-4220.	1.6	11
38	Biorecognition Layer Based On Biotin-Containing [1]Benzothieno[3,2- <i>b</i>][1]benzothiophene Derivative for Biosensing by Electrolyte-Gated Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2022, 14, 16462-16476.	4.0	11
39	13C-NMR glycosylation effects in (1→3)-linked furanosyl-pyranosides. Carbohydrate Research, 2015, 417, 1-10.	1.1	9
40	Carbohydrate Specificity of Antibodies against Phytopathogenic Fungi of the Aspergillus Genus. Applied Biochemistry and Microbiology, 2018, 54, 522-527.	0.3	9
41	Synthetic Oligosaccharides Mimicking Fungal Cell Wall Polysaccharides. Current Topics in Microbiology and Immunology, 2019, 425, 1-16.	0.7	9
42	Modeling of polysaccharides with oligosaccharides: how large should the model be?. Mendeleev Communications, 2007, 17, 57-62.	0.6	8
43	Driving Force of the Pyranoside-into-Furanoside Rearrangement. ACS Omega, 2019, 4, 1139-1143.	1.6	8
44	Stereoselective Synthesis of the 3-Aminopropyl Glycosides of α- <scp>d</scp> -Xyl-(1→3)-β- <scp>d</scp> -Glc and α- <scp>d</scp> -Xyl-(1→3)-α- <scp>d</scp> -Xyl-(1→3)-β- <scp>d</scp> -Glc and of Their Corresponding <i>N</i> -Octanoyl Derivatives. Synthesis, 2007, 2007, 3147-3154.	1.2	7
45	Preparative synthesis of selectively substituted 1,6-anhydro-α-D-galactofuranose derivatives. Mendeleev Communications, 2014, 24, 336-337.	0.6	7
46	Ring distortion in pyranosides caused by per-O-sulfation. Carbohydrate Research, 2016, 436, 20-24.	1.1	7
47	Reinvestigation of Carbohydrate Specificity of EBCA-1 Monoclonal Antibody Used for the Detection of Candida Mannan. Journal of Fungi (Basel, Switzerland), 2021, 7, 504.	1.5	7
48	Influence of per-O-sulfation upon the conformational behaviour of common furanosides. Beilstein Journal of Organic Chemistry, 2019, 15, 685-694.	1.3	6
49	Application of computational methods for the studies of carbohydrate reactivity. Carbohydrate Chemistry, 2020, , 151-169.	0.3	6
50	Study of sulfated derivatives of polyhydroxy compounds as inhibitors of blood coagulation. Russian Chemical Bulletin, 2010, 59, 232-235.	0.4	5
51	Conformational changes in common monosaccharides caused by per-O-sulfation. Pure and Applied Chemistry, 2019, 91, 1223-1229.	0.9	5
52	Synthesis and conformational analysis of vicinally branched trisaccharide β- <scp>d</scp> -Gal <i>f</i> -(1 → 2)-[β- <scp>d</scp> -Gal <i>f</i> -(1 → 3)-]-α-Gal <i>p</i> from <i>Cryptococcu neoformans</i> galactoxylomannan. Organic and Biomolecular Chemistry, 2021, 19, 2923-2931.	s 1.5	4
53	Synthesis of sulfated dendrimers and studies of their anticoagulant and antiinflammatory activity. Russian Chemical Bulletin, 2011, 60, 2572-2578.	0.4	3
54	Potential of fluorescence polarization immunoassay for the detection of Aspergillus fumigatus galactomannan. Russian Chemical Bulletin, 2019, 68, 2365-2369.	0.4	3

VADIM B KRYLOV

#	Article	IF	CITATIONS
55	Synthesis of biotinylated pentasaccharide structurally related to a fragment of glucomannan from Candida utilis. Russian Chemical Bulletin, 2021, 70, 2208-2213.	0.4	3
56	Carbohydrate Specificity of Antibodies Against Yeast Preparations of Saccharomyces cerevisiae and Candida krusei. Applied Biochemistry and Microbiology, 2018, 54, 665-669.	0.3	2
57	Acyl derivatives of ivermectin 5-oxime with antifungal activity. Russian Chemical Bulletin, 2019, 68, 438-444.	0.4	2
58	Computational and NMR Conformational Analysis of Galactofuranoside Cycles Presented in Bacterial and Fungal Polysaccharide Antigens. Frontiers in Molecular Biosciences, 2021, 8, 719396.	1.6	2
59	Choice of ab initio method for calculations of the key steps for the mechanism of rearrangement of sulfated pyranosides into furanosides. Russian Chemical Bulletin, 2015, 64, 558-561.	0.4	1
60	Pyranoside-into-furanoside rearrangement of D-glucuronopyranoside derivatives. Mendeleev Communications, 2016, 26, 483-484.	0.6	1
61	Gas-phase fragmentation studies of biotinylated oligomannuronopyranosides under conditions of collisionally activated dissociation. Russian Chemical Bulletin, 2017, 66, 1686-1690.	0.4	1
62	The reaction of amidoximes with carboxylic acids or their esters under high-pressure conditions. Russian Chemical Bulletin, 2019, 68, 347-350.	0.4	1
63	Affinity characteristics of anti-β-(1→3)-d-glucan monoclonal antibody 3G11 by fluorescence polarization immunoassay. Russian Chemical Bulletin, 2021, 70, 975-981.	0.4	1
64	Calculation of possible stabilization of glycosyl carbocations in furanosides by different theoretical methods. Russian Chemical Bulletin, 2015, 64, 2763-2768.	0.4	0
65	Gas-Phase Fragmentation Studies of Biotinylated, Hexaethylene Glycol–Spacered Oligosaccharides—Molecular Probes—Using Electrospray Mass Spectrometry on a Hybrid High-Resolution Mass Spectrometer, Iournal of Analytical Chemistry, 2017, 72, 1312-1321.	0.4	0