Bing Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2144177/publications.pdf

Version: 2024-02-01

		147801	1	49698
78	3,476	31		56
papers	citations	h-index		g-index
87	87	87		3791
07	07	07		37 71
all docs	docs citations	times ranked		citing authors

#	Article	IF	Citations
1	Crystal-Phase-Mediated Restructuring of Pt on TiO ₂ with Tunable Reactivity: Redispersion versus Reshaping. ACS Catalysis, 2022, 12, 3634-3643.	11.2	44
2	Ni ²⁺ â€Directed Anisotropic Growth of PtCu Nested Skeleton Cubes Boosting Electroreduction of Oxygen. Advanced Science, 2022, 9, e2104927.	11.2	14
3	In-situ generation and global property profiling of metal nanoclusters by ultraviolet laser dissociation-mass spectrometry. Science China Chemistry, 2022, 65, 1196-1203.	8.2	11
4	Noble Metal-Free 2D 1T-MoS ₂ Edge Sites Boosting Selective Hydrogenation of Maleic Anhydride. ACS Catalysis, 2022, 12, 8986-8994.	11,2	18
5	CO _x â€Resistant Oxidative Dehydrogenation of Cyclohexane Catalyzed by sp ³ @sp ^{>2} Nanodiamonds towards Highly Selective Cyclohexene Production. ChemCatChem, 2021, 13, 610-616.	3.7	5
6	Structural phase evolved Ni ²⁺ â€doped fluoride nanocrystals in KFâ°ZnF ₂ â°SiO ₂ glassâ€ceramics. Journal of the American Ceramic Society, 2021, 104, 824-832.	3.8	4
7	Tunable strain drives the activity enhancement for oxygen reduction reaction on Pd@Pt core-shell electrocatalysts. Journal of Power Sources, 2021, 485, 229340.	7.8	21
8	On-surface formation of metal–organic coordination networks with Câc¯Agâc¯C and C=Oâc¯Ag interactions assisted by precursor self-assembly. Journal of Chemical Physics, 2021, 154, 044703.	3.0	9
9	In situ identification of the metallic state of Ag nanoclusters in oxidative dispersion. Nature Communications, 2021, 12, 1406.	12.8	42
10	Edgeâ€Confined Pt ₁ /MoS ₂ Singleâ€Atom Catalyst Promoting the Selective Activation of Carbonâ€Oxygen Bond. ChemCatChem, 2021, 13, 2783-2793.	3.7	18
11	Oxidative Strong Metal–Support Interactions between Metals and Inert Boron Nitride. Journal of Physical Chemistry Letters, 2021, 12, 4187-4194.	4.6	35
12	Direct oxidation of methane to oxygenates on supported single Cu atom catalyst. Applied Catalysis B: Environmental, 2021, 285, 119827.	20.2	72
13	CO ₂ Methanation on Cu-Cluster Decorated Zirconia Supports with Different Morphology: A Combined Experimental In Situ GIXANES/GISAXS, Ex Situ XPS and Theoretical DFT Study. ACS Catalysis, 2021, 11, 6210-6224.	11.2	28
14	Integration of Bimetallic Electronic Synergy with Oxide Site Isolation Improves the Selective Hydrogenation of Acetylene. Angewandte Chemie - International Edition, 2021, 60, 19324-19330.	13.8	50
15	Integration of Bimetallic Electronic Synergy with Oxide Site Isolation Improves the Selective Hydrogenation of Acetylene. Angewandte Chemie, 2021, 133, 19473-19479.	2.0	3
16	CeO2 supported Pd dimers boosting CO2 hydrogenation to ethanol. Applied Catalysis B: Environmental, 2021, 291, 120122.	20.2	88
17	Support-Induced unusual size dependence of Pd catalysts in chemoselective hydrogenation of para-chloronitrobenzene. Journal of Catalysis, 2021, 400, 173-183.	6.2	32
18	Zeoliteâ€Tailored Active Site Proximity for the Efficient Production of Pentanoic Biofuels. Angewandte Chemie - International Edition, 2021, 60, 23713-23721.	13.8	43

#	Article	IF	CITATIONS
19	Zeoliteâ€Tailored Active Site Proximity for the Efficient Production of Pentanoic Biofuels. Angewandte Chemie, 2021, 133, 23906-23914.	2.0	10
20	Near 100% ethene selectivity achieved by tailoring dual active sites to isolate dehydrogenation and oxidation. Nature Communications, 2021, 12, 5447.	12.8	30
21	Achieving stable Na metal cycling via polydopamine/multilayer graphene coating of a polypropylene separator. Nature Communications, 2021, 12, 5786.	12.8	69
22	Optimized oxygen reduction activity by tuning shell component in Pd@Pt-based core-shell electrocatalysts. Journal of Colloid and Interface Science, 2021, 604, 301-309.	9.4	4
23	Identifying key mononuclear Fe species for low-temperature methane oxidation. Chemical Science, 2021, 12, 3152-3160.	7.4	49
24	Scalable Production of Freestanding Few-Layer β ₁₂ -Borophene Single Crystalline Sheets as Efficient Electrocatalysts for Lithium–Sulfur Batteries. ACS Nano, 2021, 15, 17327-17336.	14.6	40
25	Oxidative Dehydrogenation of Cyclohexane by Cu <i>vs</i> Pd Clusters: Selectivity Control by Specific Cluster Dynamics. ChemCatChem, 2020, 12, 1307-1315.	3.7	21
26	Direct observation of the geometric isomer selectivity of a reaction controlled <i>via</i> adsorbed bromine. Nanoscale, 2020, 12, 2726-2731.	5.6	11
27	Dialing in Catalytic Sites on Metal Organic Framework Nodes: MIL-53(Al) and MIL-68(Al) Probed with Methanol Dehydration Catalysis. ACS Applied Materials & Samp; Interfaces, 2020, 12, 53537-53546.	8.0	34
28	Reaction-Induced Strong Metal–Support Interactions between Metals and Inert Boron Nitride Nanosheets. Journal of the American Chemical Society, 2020, 142, 17167-17174.	13.7	164
29	Amphiphilic Oxo-Bridged Ruthenium "Green Dimer―for Water Oxidation. IScience, 2020, 23, 100969.	4.1	15
30	Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO2 hydrogenation. Nature Catalysis, 2020, 3, 411-417.	34.4	186
31	Structural reversibility of Cu doped NU-1000 MOFs under hydrogenation conditions. Journal of Chemical Physics, 2020, 152, 084703.	3.0	16
32	Lotus-Leaf-Inspired Flexible and Tunable Random Laser. ACS Applied Materials & Samp; Interfaces, 2020, 12, 10050-10057.	8.0	25
33	Dynamic Interplay between Copper Tetramers and Iron Oxide Boosting CO ₂ Conversion to Methanol and Hydrocarbons under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 14435-14442.	6.7	19
34	Mapping XANES spectra on structural descriptors of copper oxide clusters using supervised machine learning. Journal of Chemical Physics, 2019, 151, 164201.	3.0	60
35	Nanoassemblies of ultrasmall clusters with remarkable activity in carbon dioxide conversion into C1 fuels. Nanoscale, 2019, 11, 4683-4687.	5.6	8
36	Using first principles calculations to interpret XANES experiments: extracting the size-dependence of the $(i>p< i>a\in S, T< i>)$ phase diagram of sub-nanometer Cu clusters in an O ₂ environment. Journal of Physics Condensed Matter, 2019, 31, 144002.	1.8	6

#	Article	IF	CITATIONS
37	Construction of Cyclobutanes by Multicomponent Cascade Reactions in Homogeneous Solution through Visibleâ€Light Catalysis. Chemistry - A European Journal, 2019, 25, 879-884.	3.3	13
38	Reversing Sizeâ€Dependent Trends in the Oxidation of Copper Clusters through Support Effects. European Journal of Inorganic Chemistry, 2018, 2018, 16-22.	2.0	20
39	Cover Feature: Reversing Size-Dependent Trends in the Oxidation of Copper Clusters through Support Effects (Eur. J. Inorg. Chem. 1/2018). European Journal of Inorganic Chemistry, 2018, 2018, 3-3.	2.0	0
40	A Bioâ€inspired Cu ₄ O ₄ Cubane: Effective Molecular Catalysts for Electrocatalytic Water Oxidation in Aqueous Solution. Angewandte Chemie - International Edition, 2018, 57, 7850-7854.	13.8	91
41	Highly efficient Cu-decorated iron oxide nanocatalyst for low pressure CO2 conversion. Applied Catalysis B: Environmental, 2018, 225, 128-138.	20.2	24
42	Subnanometer Substructures in Nanoassemblies Formed from Clusters under a Reactive Atmosphere Revealed Using Machine Learning. Journal of Physical Chemistry C, 2018, 122, 21686-21693.	3.1	69
43	A Bioâ€inspired Cu ₄ O ₄ Cubane: Effective Molecular Catalysts for Electrocatalytic Water Oxidation in Aqueous Solution. Angewandte Chemie, 2018, 130, 7976-7980.	2.0	19
44	Copper Cluster Size Effect in Methanol Synthesis from CO ₂ . Journal of Physical Chemistry C, 2017, 121, 10406-10412.	3.1	144
45	General and Efficient Intermolecular [2+2] Photodimerization of Chalcones and Cinnamic Acid Derivatives in Solution through Visibleâ€Light Catalysis. Angewandte Chemie - International Edition, 2017, 56, 15407-15410.	13.8	128
46	General and Efficient Intermolecular [2+2] Photodimerization of Chalcones and Cinnamic Acid Derivatives in Solution through Visibleâ€Light Catalysis. Angewandte Chemie, 2017, 129, 15609-15612.	2.0	30
47	Tracking the Fe ^{IV} (O) intermediate and O–O bond formation of a nonheme iron catalyst for water oxidation. Chemical Communications, 2017, 53, 9063-9066.	4.1	19
48	Selfâ€Assembled Amphiphilic Water Oxidation Catalysts: Control of Oâ^'O Bond Formation Pathways by Different Aggregation Patterns. Angewandte Chemie, 2016, 128, 6337-6342.	2.0	10
49	Selfâ€Assembled Amphiphilic Water Oxidation Catalysts: Control of Oâ^'O Bond Formation Pathways by Different Aggregation Patterns. Angewandte Chemie - International Edition, 2016, 55, 6229-6234.	13.8	29
50	Visible Light Initiated Hantzsch Synthesis of 2,5-Diaryl-Substituted Pyrroles at Ambient Conditions. Organic Letters, 2016, 18, 2479-2482.	4.6	68
51	Electrochemical behaviour of naked sub-nanometre sized copper clusters and effect of CO ₂ . Catalysis Science and Technology, 2016, 6, 6977-6985.	4.1	31
52	Effects of red mud on rheological, crystalline, and mechanical properties of red mud/ <scp>PBAT</scp> composites. Polymer Composites, 2016, 37, 2001-2007.	4.6	16
53	Electron stimulated hydroxylation of a metal supported silicate film. Physical Chemistry Chemical Physics, 2016, 18, 3755-3764.	2.8	33
54	Carbon Dioxide Conversion to Methanol over Size-Selected Cu ₄ Clusters at Low Pressures. Journal of the American Chemical Society, 2015, 137, 8676-8679.	13.7	299

#	Article	IF	CITATIONS
55	Surface interaction induced transcrystallization in biodegradable poly(butylene succinate)-fibre composites. Colloid and Polymer Science, 2015, 293, 2701-2707.	2.1	6
56	Ultrathin silicatene/silicon-carbide hybrid film on a metal substrate. Surface Science, 2015, 632, 9-13.	1.9	14
57	Ultrathin Silica Films: The Atomic Structure of Twoâ€Dimensional Crystals and Glasses. Chemistry - A European Journal, 2014, 20, 9176-9183.	3.3	51
58	Tuning Spatial Distribution of Surface Hydroxyls on a Metal-Supported Single-Layer Silica. Journal of Physical Chemistry Letters, 2014, 5, 1701-1704.	4.6	11
59	Methanol Reactivity on Silica-Supported Ceria Nanoparticles. Topics in Catalysis, 2014, 57, 1229-1235.	2.8	7
60	Permeation of a Single-Layer SiO ₂ Membrane and Chemistry in Confined Space. Journal of Physical Chemistry C, 2014, 118, 29034-29042.	3.1	56
61	Patterned Defect Structures Predicted for Graphene Are Observed on Single-Layer Silica Films. Nano Letters, 2013, 13, 4422-4427.	9.1	42
62	Interaction of Probe Molecules with Bridging Hydroxyls of Two-Dimensional Zeolites: A Surface Science Approach. Journal of Physical Chemistry C, 2013, 117, 13547-13556.	3.1	67
63	Building blocks of zeolites on an aluminosilicate ultra-thin film. Microporous and Mesoporous Materials, 2013, 165, 158-162.	4.4	42
64	Atomic Structure of an Ultrathin Fe-Silicate Film Grown on a Metal: AÂMonolayer of Clay?. Journal of the American Chemical Society, 2013, 135, 19222-19228.	13.7	35
65	Thin silica films on Ru(0001): monolayer, bilayer and three-dimensional networks of [SiO4] tetrahedra. Physical Chemistry Chemical Physics, 2012, 14, 11344.	2.8	106
66	Effect of lattice-gas atoms on the adsorption behaviour of thioether molecules. Physical Chemistry Chemical Physics, 2012, 14, 10987.	2.8	8
67	Tuning Structural and Mechanical Properties of Two-Dimensional Molecular Crystals: The Roles of Carbon Side Chains. Nano Letters, 2012, 12, 1229-1234.	9.1	27
68	Stabilizing Gold Adatoms by Thiophenyl Derivatives: A Possible Route toward Metal Redispersion. Journal of the American Chemical Society, 2012, 134, 11161-11167.	13.7	16
69	Support effects on the atomic structure of ultrathin silica films on metals. Applied Physics Letters, 2012, 100, 151608.	3.3	80
70	Modeling Zeolites with Metalâ€Supported Twoâ€Dimensional Aluminosilicate Films. Angewandte Chemie - International Edition, 2012, 51, 6005-6008.	13.8	96
71	The Atomic Structure of a Metalâ€6upported Vitreous Thin Silica Film. Angewandte Chemie - International Edition, 2012, 51, 404-407.	13.8	207
72	Role of the V2O3(0001) Defect Structure in the Adsorption of Au Adatoms. Journal of Physical Chemistry C, 2011, 115, 3404-3409.	3.1	2

#	Article	IF	CITATIONS
73	Direct Observation of Enantiospecific Substitution in a Two-Dimensional Chiral Phase Transition. Journal of the American Chemical Society, 2010, 132, 10440-10444.	13.7	40
74	Charge-Mediated Adsorption Behavior of CO on MgO-Supported Au Clusters. Journal of the American Chemical Society, 2010, 132, 7745-7749.	13.7	112
75	CO Adsorption on Thin MgO Films and Single Au Adatoms: A Scanning Tunneling Microscopy Study. Journal of Physical Chemistry C, 2010, 114, 8997-9001.	3.1	22
76	Homochiral Recognition among Organic Molecules on Copper(110). Langmuir, 2010, 26, 3402-3406.	3.5	21
77	Alternating the Crystalline Structural Transition of Coronene Molecular Overlayers on Ag(110) through Temperature Increase. Journal of Physical Chemistry C, 2009, 113, 17643-17647.	3.1	9
78	Influence of Deoxyribose Group on Self-Assembly of Thymidine on Au(111). Journal of Physical Chemistry C, 2009, 113, 17590-17594.	3.1	10