Liliana Grenho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2143844/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microgap and bacterial microleakage during the osseointegration period: An inÂvitro assessment of the cover screw and healing abutment in a platform-switched implant system. Journal of Prosthetic Dentistry, 2023, 130, 87-95.	1.1	9
2	Fabrication of a biodegradable and cytocompatible magnesium/nanohydroxyapatite/fluorapatite composite by upward friction stir processing for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 129, 105137.	1.5	18
3	Enhanced antibacterial activity of Rosehip extract-functionalized Mg(OH)2 nanoparticles: An in vitro and in vivo study. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112643.	2.5	6
4	Effects of 660â€nm and 780â€nm Laser Therapy on ST88â€14 Schwann Cells. Photochemistry and Photobiology, 2021, 97, 198-204.	1.3	6
5	Porous tantalum oxide with osteoconductive elements and antibacterial core-shell nanoparticles: A new generation of materials for dental implants. Materials Science and Engineering C, 2021, 120, 111761.	3.8	29
6	Rosehip Extract-Functionalized Magnesium Hydroxide Nanoparticles and Its Effect on Osteoblastic and Osteoclastic Cells. Materials, 2021, 14, 4172.	1.3	6
7	Influence of a macroporous \hat{l}^2 -TCP structure on human mesenchymal stem cell proliferation and differentiation in vitro. Open Ceramics, 2021, 7, 100141.	1.0	4
8	45S5 Bioglass-Derived Glass-Ceramic Scaffolds Containing Niobium Obtained by Gelcasting Method. Materials Research, 2021, 24, .	0.6	4
9	Femtosecond laser microstructuring of alumina toughened zirconia for surface functionalization of dental implants. Ceramics International, 2020, 46, 1383-1389.	2.3	52
10	Citrate zinc hydroxyapatite nanorods with enhanced cytocompatibility and osteogenesis for bone regeneration. Materials Science and Engineering C, 2020, 115, 111147.	3.8	35
11	Understanding intracellular trafficking and anti-inflammatory effects of minocycline chitosan-nanoparticles in human gingival fibroblasts for periodontal disease treatment. International Journal of Pharmaceutics, 2019, 572, 118821.	2.6	37
12	Exposure effects of endotoxin-free titanium-based wear particles to human osteoblasts. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 95, 143-152.	1.5	15
13	Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration. Materials Science and Engineering C, 2019, 101, 15-26.	3.8	127
14	Influence of apple phytochemicals in ZnO nanoparticles formation, photoluminescence and biocompatibility for biomedical applications. Materials Science and Engineering C, 2019, 101, 76-87.	3.8	34
15	Highly porous 45S5 bioglass-derived glass–ceramic scaffolds by gelcasting of foams. Journal of Materials Science, 2018, 53, 10718-10731.	1.7	14
16	Micropatterned Silica Films with Nanohydroxyapatite for Y-TZP Implants. Journal of Dental Research, 2018, 97, 1003-1009.	2.5	4
17	Potential anti-cancer and anti-Candida activity of Zn-derived foams. Journal of Materials Chemistry B, 2018, 6, 2821-2830.	2.9	5
18	Femtosecond laser impact on calcium phosphate bioceramics assessed by micro-Raman spectroscopy and osteoblastic behaviour. Journal of the European Ceramic Society, 2018, 38, 5545-5553.	2.8	8

Liliana Grenho

#	Article	IF	CITATIONS
19	Antibacterial effect and biocompatibility of a novel nanostructured ZnO-coated gutta-percha cone for improved endodontic treatment. Materials Science and Engineering C, 2018, 92, 840-848.	3.8	26
20	Cytotoxicity and antimicrobial action of selected phytochemicals against planktonic and sessile <i>Streptococcus mutans</i> . PeerJ, 2018, 6, e4872.	0.9	22
21	Levofloxacin-loaded bone cement delivery system: Highly effective against intracellular bacteria and Staphylococcus aureus biofilms. International Journal of Pharmaceutics, 2017, 532, 241-248.	2.6	35
22	<i>Staphylococcus aureus</i> and <i>Escherichia coli</i> dualâ€species biofilms on nanohydroxyapatite loaded with CHX or ZnO nanoparticles. Journal of Biomedical Materials Research - Part A, 2017, 105, 491-497.	2.1	19
23	A minocycline-releasing PMMA system as a space maintainer for staged bone reconstructions— <i>in vitro</i> antibacterial, cytocompatibility and anti-inflammatory characterization. Biomedical Materials (Bristol), 2017, 12, 035009.	1.7	11
24	Biodegradation, biocompatibility, and osteoconduction evaluation of collagenâ€nanohydroxyapatite cryogels for bone tissue regeneration. Journal of Biomedical Materials Research - Part A, 2016, 104, 57-70.	2.1	60
25	Antibacterial activity and biocompatibility of three-dimensional nanostructured porous granules of hydroxyapatite and zinc oxide nanoparticles—an <i>in vitro</i> and <i>in vivo</i> study. Nanotechnology, 2015, 26, 315101.	1.3	55
26	Anti-sessile bacterial and cytocompatibility properties of CHX-loaded nanohydroxyapatite. Colloids and Surfaces B: Biointerfaces, 2015, 130, 305-314.	2.5	17
27	<i>In vitro</i> antimicrobial activity and biocompatibility of propolis containing nanohydroxyapatite. Biomedical Materials (Bristol), 2015, 10, 025004.	1.7	31
28	Propolis Varnish: Antimicrobial Properties against Cariogenic Bacteria, Cytotoxicity, and Sustained-Release Profile. BioMed Research International, 2014, 2014, 1-6.	0.9	29
29	In vitro analysis of the antibacterial effect of nanohydroxyapatite–ZnO composites. Journal of Biomedical Materials Research - Part A, 2014, 102, 3726-3733.	2.1	28
30	Influence of nanohydroxyapatite surface properties on Staphylococcus epidermidis biofilm formation. Journal of Biomaterials Applications, 2014, 28, 1325-1335.	1.2	18
31	A modular reactor to simulate biofilm development in orthopedic materials. International Microbiology, 2013, 16, 191-8.	1.1	6
32	Micropatterned silica thin films with nanohydroxyapatite micro-aggregates for guided tissue regeneration. Dental Materials, 2012, 28, 1250-1260.	1.6	24
33	Adhesion of <i>Staphylococcus aureus</i> , <i>Staphylococcus epidermidis</i> , and <i>Pseudomonas aeruginosa</i> onto nanohydroxyapatite as a bone regeneration material. Journal of Biomedical Materials Research - Part A 2012, 1004, 1823-1830	2.1	16