Yong-Qing Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2143757/publications.pdf

Version: 2024-02-01

430442 414034 1,506 40 18 32 citations g-index h-index papers 40 40 40 1256 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Near-infrared Raman spectroscopy of single optically trapped biological cells. Optics Letters, 2002, 27, 249.	1.7	317
2	Germination of Spores of the Orders <i>Bacillales</i> and <i>Clostridiales</i> . Annual Review of Microbiology, 2017, 71, 459-477.	2.9	170
3	Confocal micro-Raman spectroscopy of single biological cells using optical trapping and shifted excitation difference techniques. Journal of Applied Physics, 2003, 93, 2982-2986.	1.1	133
4	Characterization of bacterial spore germination using phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers. Nature Protocols, 2011, 6, 625-639.	5.5	123
5	Real-Time Detection of Kinetic Germination and Heterogeneity of SingleBacillusSpores by Laser Tweezers Raman Spectroscopy. Analytical Chemistry, 2006, 78, 6936-6941.	3.2	113
6	Characterization of Bacterial Spore Germination Using Integrated Phase Contrast Microscopy, Raman Spectroscopy, and Optical Tweezers. Analytical Chemistry, 2010, 82, 3840-3847.	3.2	72
7	Characterization of the Dynamic Germination of Individual Clostridium difficile Spores Using Raman Spectroscopy and Differential Interference Contrast Microscopy. Journal of Bacteriology, 2015, 197, 2361-2373.	1.0	60
8	Rapid confocal Raman imaging using a synchro multifoci-scan scheme for dynamic monitoring of single living cells. Applied Physics Letters, 2011, 98, .	1.5	44
9	Monitoring the Kinetics of Uptake of a Nucleic Acid Dye during the Germination of Single Spores ofBacillusSpecies. Analytical Chemistry, 2010, 82, 8717-8724.	3.2	42
10	Use of Raman Spectroscopy and Phase-Contrast Microscopy To Characterize Cold Atmospheric Plasma Inactivation of Individual Bacterial Spores. Applied and Environmental Microbiology, 2016, 82, 5775-5784.	1.4	39
11	Stable optical trapping and sensitive characterization of nanostructures using standing-wave Raman tweezers. Scientific Reports, 2017, 7, 42930.	1.6	38
12	A <i>Clostridium difficile </i> -Specific, Gel-Forming Protein Required for Optimal Spore Germination. MBio, 2017, 8, .	1.8	37
13	Raman spectra and optical trapping of highly refractive and nontransparent particles. Applied Physics Letters, 2002, 81, 951-953.	1.5	36
14	Slow Leakage of Ca-Dipicolinic Acid from Individual Bacillus Spores during Initiation of Spore Germination. Journal of Bacteriology, 2015, 197, 1095-1103.	1.0	36
15	Effects of High-Pressure Treatment on Spores of Clostridium Species. Applied and Environmental Microbiology, 2016, 82, 5287-5297.	1.4	32
16	Effects of lowering water activity by various humectants on germination of spores of Bacillus species with different germinants. Food Microbiology, 2018, 72, 112-127.	2.1	22
17	Monitoring of Commitment, Blocking, and Continuation of Nutrient Germination of Individual Bacillus subtilis Spores. Journal of Bacteriology, 2014, 196, 2443-2454.	1.0	21
18	Analysis of the Germination of Individual Clostridium sporogenes Spores with and without Germinant Receptors and Cortex-Lytic Enzymes. Frontiers in Microbiology, 2017, 8, 2047.	1.5	21

#	Article	IF	Citations
19	Properties of Aged Spores of Bacillus subtilis. Journal of Bacteriology, 2019, 201, .	1.0	21
20	Memory of Germinant Stimuli in Bacterial Spores. MBio, 2015, 6, e01859-15.	1.8	19
21	Uptake and levels of the antibiotic berberine in individual dormant and germinating <i>Clostridium difficile </i> and <i>Bacillus cereus </i> spores as measured by laser tweezers Raman spectroscopy. Journal of Antimicrobial Chemotherapy, 2016, 71, 1540-1546.	1.3	19
22	Absorption of magnons in dispersively coupled hybrid quantum systems. Physical Review A, 2021, 103, .	1.0	18
23	Probing the Kinetic Anabolism of Poly-Beta-Hydroxybutyrate in Cupriavidus necator H16 Using Single-Cell Raman Spectroscopy. Sensors, 2016, 16, 1257.	2.1	13
24	Germination, Outgrowth, and Vegetative-Growth Kinetics of Dry-Heat-Treated Individual Spores of Bacillus Species. Applied and Environmental Microbiology, 2018, 84, .	1.4	13
25	Uptake of and Resistance to the Antibiotic Berberine by Individual Dormant, Germinating and Outgrowing Bacillus Spores as Monitored by Laser Tweezers Raman Spectroscopy. PLoS ONE, 2015, 10, e0144183.	1.1	8
26	Raman characterizations of red blood cells with \hat{l}^2 -thalassemia using laser tweezers Raman spectroscopy. Medicine (United States), 2018, 97, e12611.	0.4	7
27	Temporal Dependence of Photophoretic Force Optically Induced on Absorbing Airborne Particles by a Power-Modulated Laser. Physical Review Applied, 2018, 10, .	1.5	7
28	Poly(3-hydroxybutyrate) anabolism inCupriavidus necatorcultivated at various carbon-to-nitrogen ratios: insights from single-cell Raman spectroscopy. Journal of Biomedical Optics, 2016, 21, 097005.	1.4	6
29	Chemical insights into dodecylamine spore lethal germination. Chemical Science, 2014, 5, 3320-3324.	3.7	5
30	Characterization of Heterogeneity and Dynamics of Lysis of Single <i>Bacillus subtilis </i> Cells upon Prophage Induction During Spore Germination, Outgrowth, and Vegetative Growth Using Raman Tweezers and Live-Cell Phase-Contrast Microscopy. Analytical Chemistry, 2021, 93, 1443-1450.	3.2	5
31	Raman tweezers provide the fingerprint of cells supporting the late stages of KSHV reactivation. Journal of Cellular and Molecular Medicine, 2009, 13, 1920-1932.	1.6	4
32	Polarization Splitter-Rotator Based on Multimode Waveguide Grating. Crystals, 2021, 11, 1170.	1.0	3
33	Quasi-elastic light scattering of laser-trapped biological particles. , 2000, , .		1
34	Pulsed optical tweezers for levitation and manipulation of stuck biological particles., 2005,,.		1
35	Quantum state manipulation via Raman coherence., 0,,.		0
36	Direct measurement of asymmetric dynamic motion and cross-correlation of a Rayleigh particle in an optical trap. , 2001, , .		0

#	Article	lF	CITATIONS
37	Detection of activation states of T cells with Raman-tweezers spectroscopy. , 2005, , .		O
38	Detection of Bacillus thuringiensis Spore Germination via CaDPA Biomarker Using Laser Tweezers Raman Spectroscopy. , 2007, , .		O
39	Depolarized Raman spectroscopy of Optically Trapped Cells for Rapid Identification of Microorganisms. , 2007, , .		O
40	Detection of bacillus thuringiensis spore germination via CaDPA biomarker using laser tweezers raman spectroscopy., 2007,,.		0