
Norman Wildmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2143436/publications.pdf Version: 2024-02-01

NORMAN WILDMANN

#	Article	IF	CITATIONS
1	Observational constraints on methane emissions from Polish coal mines using a ground-based remote sensing network. Atmospheric Chemistry and Physics, 2022, 22, 5859-5876.	4.9	10
2	Spatially distributed and simultaneous wind measurements with a fleet of small quadrotor UAS. Journal of Physics: Conference Series, 2022, 2265, 022086.	0.4	4
3	Enhanced resource assessment and atmospheric monitoring of the research wind farm WiValdi. Journal of Physics: Conference Series, 2022, 2265, 022029.	0.4	2
4	Evaluation of a forest parameterization to improve boundary layer flow simulations over complex terrain. A case study using WRF-LES V4.0.1. Geoscientific Model Development, 2022, 15, 5195-5209.	3.6	3
5	SOUTHTRAC-GW: An Airborne Field Campaign to Explore Gravity Wave Dynamics at the World's Strongest Hotspot. Bulletin of the American Meteorological Society, 2021, 102, E871-E893.	3.3	36
6	In Situ Measurements of Wind and Turbulence by a Motor Glider in the Andes. Journal of Atmospheric and Oceanic Technology, 2021, 38, 921-935.	1.3	7
7	Distributed wind measurements with multiple quadrotor unmanned aerial vehicles in the atmospheric boundary layer. Atmospheric Measurement Techniques, 2021, 14, 3795-3814.	3.1	15
8	Estimating Upper Silesian coal mine methane emissions from airborne in situ observations and dispersion modeling. Atmospheric Chemistry and Physics, 2021, 21, 8791-8807.	4.9	18
9	The COTUR project: remote sensing of offshore turbulence for wind energy application. Atmospheric Measurement Techniques, 2021, 14, 6137-6157.	3.1	9
10	Quantification of CH ₄ coal mining emissions in Upper Silesia by passive airborne remote sensing observations with the Methane Airborne MAPper (MAMAP) instrument during the CO ₂ and Methane (CoMet) campaign. Atmospheric Chemistry and Physics, 2021, 21, 17345-17371.	4.9	16
11	Long-range Doppler lidar measurements of wind turbine wakes and their interaction with turbulent atmospheric boundary-layer flow at Perdigao 2017. Journal of Physics: Conference Series, 2020, 1618, 032034.	0.4	3
12	Mitigating Wake Turbulence Risk During Final Approach Via Plate Lines. , 2020, , .		3
13	Estimating CH ₄ , CO ₂ and CO emissions from coal mining and industrial activities in the Upper Silesian Coal Basin using an aircraft-based mass balance approach. Atmospheric Chemistry and Physics, 2020, 20, 12675-12695.	4.9	36
14	Analysis of flow in complex terrain using multi-Doppler lidar retrievals. Atmospheric Measurement Techniques, 2020, 13, 1357-1371.	3.1	7
15	Towards improved turbulence estimation with Doppler wind lidar velocity-azimuth display (VAD) scans. Atmospheric Measurement Techniques, 2020, 13, 4141-4158.	3.1	15
16	Long-term simulation of the boundary layer flow over the double-ridge site during the Perdigão 2017 field campaign. Atmospheric Chemistry and Physics, 2019, 19, 1129-1146.	4.9	22
17	Estimation of turbulence dissipation rate from Doppler wind lidars and in situ instrumentation for the Perdigão 2017 campaign. Atmospheric Measurement Techniques, 2019, 12, 6401-6423.	3.1	17
18	Quantifying CH ₄ emissions from hard coal mines using mobile sun-viewing Fourier transform spectrometry. Atmospheric Measurement Techniques, 2019, 12, 5217-5230.	3.1	38

#	Article	IF	CITATIONS
19	The Perdigão: Peering into Microscale Details of Mountain Winds. Bulletin of the American Meteorological Society, 2019, 100, 799-819.	3.3	93
20	Wind turbine wake measurements with automatically adjusting scanning trajectories in a multi-Doppler lidar setup. Atmospheric Measurement Techniques, 2018, 11, 3801-3814.	3.1	33
21	Coplanar lidar measurement of a single wind energy converter wake in distinct atmospheric stability regimes at the Perdigão 2017 experiment. Journal of Physics: Conference Series, 2018, 1037, 052006.	0.4	12
22	Reviewing Wind Measurement Approaches for Fixed-Wing Unmanned Aircraft. Atmosphere, 2018, 9, 422.	2.3	36
23	Effectiveness of the MFAS method for retrieval of height profiles of speed and direction of the wind from measurements by a Windcube 200s lidar. , 2018, , .		2
24	Spatiotemporal visualization of wind turbulence from measurements by a Windcube 200s lidar in the atmospheric boundary layer. , 2018, , .		3
25	Measuring the local wind field at an escarpment using small remotely-piloted aircraft. Renewable Energy, 2017, 103, 613-619.	8.9	30
26	An Observational Case Study on the Influence of Atmospheric Boundary-Layer Dynamics on New Particle Formation. Boundary-Layer Meteorology, 2016, 158, 67-92.	2.3	66
27	Observations of the Early Morning Boundary-Layer Transition with Small Remotely-Piloted Aircraft. Boundary-Layer Meteorology, 2015, 157, 345-373.	2.3	29
28	ALADINA – an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer. Atmospheric Measurement Techniques, 2015, 8, 1627-1639.	3.1	84
29	Towards higher accuracy and better frequency response with standard multi-hole probes in turbulence measurement with remotely piloted aircraft (RPA). Atmospheric Measurement Techniques, 2014, 7, 1027-1041.	3.1	51
30	An inverse-modelling approach for frequency response correction of capacitive humidity sensors in ABL research with small remotely piloted aircraft (RPA). Atmospheric Measurement Techniques, 2014, 7, 3059-3069.	3.1	22
31	The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence. Atmospheric Chemistry and Physics, 2014, 14, 10931-10960.	4.9	151
32	MASC – a small Remotely Piloted Aircraft (RPA) for wind energy research. Advances in Science and Research, 2014, 11, 55-61.	1.0	70
33	Two fast temperature sensors for probing of the atmospheric boundary layer using small remotely piloted aircraft (RPA). Atmospheric Measurement Techniques, 2013, 6, 2101-2113.	3.1	44
34	In-situ unmanned aerial vehicle (UAV) sensor calibration to improve automatic image orthorectification. , 2010, , .		5