
Babak Emamalizadeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/214324/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Clinical and Molecular Genetic Study of 50 Families with Autosomal Recessive Parkinsonism Revealed Known and Novel Gene Mutations. Molecular Neurobiology, 2018, 55, 3477-3489.	4.0	67
2	RIT2 Polymorphisms: Is There a Differential Association?. Molecular Neurobiology, 2017, 54, 2234-2240.	4.0	31
3	Detection of copy number changes in genes associated with Parkinson's disease in Iranian patients. Neuroscience Letters, 2013, 551, 75-78.	2.1	29
4	Variation in the miRNA-433 binding site of FGF20 is a risk factor for Parkinson's disease in Iranian population. Journal of the Neurological Sciences, 2015, 355, 72-74.	0.6	25
5	RIT2 , a susceptibility gene for Parkinson's disease in Iranian population. Neurobiology of Aging, 2014, 35, e27-e28.	3.1	23
6	The analysis of association between SNCA, HUSEYO and CSMD1 gene variants and Parkinson's disease in Iranian population. Neurological Sciences, 2016, 37, 731-736.	1.9	20
7	Genetic Analysis of the <i>ZNF512B</i> , <i>SLC41A1,</i> and <i>ALDH2</i> Polymorphisms in Parkinson's Disease in the Iranian Population. Genetic Testing and Molecular Biomarkers, 2016, 20, 629-632.	0.7	18
8	The human RIT2 core promoter short tandem repeat predominant allele is species-specific in length: a selective advantage for human evolution?. Molecular Genetics and Genomics, 2017, 292, 611-617.	2.1	18
9	SIPA1L2 , MIR4697 , GCH1 and VPS13C loci and risk of Parkinson's diseases in Iranian population: A case-control study. Journal of the Neurological Sciences, 2016, 369, 1-4.	0.6	15
10	The rs1572931 polymorphism of the RAB7L1 gene promoter is associated with reduced risk of Parkinson's disease. Neurological Research, 2015, 37, 1029-1031.	1.3	14
11	A genetic variant in CAMKK2 gene is possibly associated with increased risk of bipolar disorder. Journal of Neural Transmission, 2016, 123, 323-328.	2.8	13
12	An updated overview and classification of bioinformatics tools for MicroRNA analysis, which one to choose?. Computers in Biology and Medicine, 2021, 134, 104544.	7.0	13
13	<i>RAB7L1</i> promoter polymorphism and risk of Parkinson's disease; a case-control study. Neurological Research, 2017, 39, 468-471.	1.3	12
14	RIT2: responsible and susceptible gene for neurological and psychiatric disorders. Molecular Genetics and Genomics, 2018, 293, 785-792.	2.1	12
15	Features, genetics and their correlation in Jalili syndrome: a systematic review. Journal of Medical Genetics, 2019, 56, 358-369.	3.2	12
16	Analysis of CYP17, CYP19 and CYP1A1 Gene Polymorphisms in Iranian Women with Breast Cancer. Asian Pacific Journal of Cancer Prevention, 2016, 17, 23-26.	1.2	12
17	Incomplete penetrance of <i>CRX</i> gene for autosomal dominant form of cone-rod dystrophy. Ophthalmic Genetics, 2019, 40, 259-266.	1.2	11
18	Macromolecular biomarkers of chronic obstructive pulmonary disease in exhaled breath condensate. Biomarkers in Medicine, 2020, 14, 1047-1063.	1.4	11

#	Article	IF	CITATIONS
19	Phenotypic and genotypic characterization of families with complex intellectual disability identified pathogenic genetic variations in known and novel disease genes. Scientific Reports, 2020, 10, 968.	3.3	8
20	c.376G>A mutation in WFS1 gene causes Wolfram syndrome without deafness. European Journal of Medical Genetics, 2016, 59, 65-69.	1.3	7
21	Tips for improving the quality and quantity of the extracted DNA from exhaled breath condensate samples. Nucleosides, Nucleotides and Nucleic Acids, 2020, 39, 688-698.	1.1	7
22	Connection of miR-185 and miR-320a expression levels with response to interferon-beta in multiple sclerosis and Related Disorders, 2020, 44, 102264.	2.0	6
23	miR-504 expression level is increased in multiple sclerosis patients responder to interferon-beta. Journal of Neuroimmunology, 2020, 342, 577212.	2.3	6
24	Exhaled Breath Condensate: A Non-Invasive Source for Tracking of Genetic and Epigenetic Alterations in Lung Diseases . Pharmaceutical Sciences, 2020, 27, 149-161.	0.2	6
25	Mutational analysis of CYP1B1 gene in Iranian pedigrees with glaucoma reveals known and novel mutations. International Ophthalmology, 2021, 41, 3269-3276.	1.4	5
26	Monoamine Oxidase AGene polymorphisms and Bipolar Disorder in Iranian Population. Iranian Red Crescent Medical Journal, 2015, 17, e23095.	0.5	5
27	Screening for genomic rearrangements at BRCA1 locus in Iranian women with breast cancer using multiplex ligation-dependent probe amplification. Journal of Genetics, 2013, 92, 131-134.	0.7	4
28	A novel c.240_241insGG mutation in NDP gene in a family with Norrie disease. Australasian journal of optometry, The, 2018, 101, 255-259.	1.3	4
29	A novel splice site mutation in the SDCCAG8 gene in an Iranian family with Bardet–Biedl syndrome. International Ophthalmology, 2021, 41, 389-397.	1.4	4
30	A Novel PKD1 Mutation in a Patient with Autosomal Dominant Polycystic Kidney Disease. International Journal of Molecular and Cellular Medicine, 2016, 5, 123-4.	1.1	3
31	Exhaled breath condensate efficacy to identify mutations in patients with lung cancer: A pilot study. Nucleosides, Nucleotides and Nucleic Acids, 2022, 41, 370-383.	1.1	3
32	Association analysis of DISC1 gene polymorphisms with Attention-deficit/hyperactivity disorder in Iranian population. Pakistan Journal of Medical Sciences, 2015, 31, 1162-6.	0.6	2
33	Vitamin D receptor gene rs4334089 polymorphism and Parkinson's disease in Iranian population. Basal Ganglia, 2016, 6, 157-160.	0.3	2
34	Genetic analysis of SNCA gene polymorphisms in Parkinson's disease in an Iranian population. Basal Ganglia, 2017, 10, 4-7.	0.3	2
35	Genetic analysis of rs11038167, rs11038172 and rs835784 polymorphisms of the TSPAN18 gene in Iranian schizophrenia patients. Meta Gene, 2019, 22, 100609.	0.6	2
36	SNAP-25gene variations and attention-deficit hyperactivity disorder in Iranian population. Neurological Research, 2016, 38, 959-964.	1.3	1

#	Article	IF	CITATIONS
37	An interdependence between GAPVD1 gene polymorphism, expression level and response to interferon beta in patients with multiple sclerosis. Journal of Neuroimmunology, 2021, 353, 577507.	2.3	1
38	No Evidence for Association Between Norepinephrine Transporter-3081 (A/T) Polymorphism and Attention Deficit Hyperactivity Disorder in Iranian Population. Iranian Red Crescent Medical Journal, 2015, 17, e22996.	0.5	1
39	LRP8 (rs5177) and CEP85L (rs11756438) are contributed to schizophrenia susceptibility in Iranian population. Psychiatric Genetics, 2020, 30, 162-165.	1.1	1
40	Novel Mutations in Gene in Families with Gelatinous Drop-like Corneal Dystrophy (GDLD). International Journal of Molecular and Cellular Medicine, 2017, 6, 204-211.	1.1	1
41	Novel <i>ABCD1</i> gene mutations in Iranian pedigrees with X-linked adrenoleukodystrophy. Journal of Pediatric Endocrinology and Metabolism, 2019, 32, 1207-1215.	0.9	0
42	MMP9 (RS20544) and ADCY2 (RS58502974) as susceptibility factors for schizophrenia in Iranian population. Meta Gene, 2020, 26, 100810.	0.6	0
43	Genetic Susceptibility to Breast cancer in East Azerbaijan, Iran. Biosciences, Biotechnology Research Asia, 2018, 15, 469-473.	0.5	0
44	Study of Some Genetic Variants for Cancer in Women with Breast Cancer In the East Azarbaijan Region by MLPA Method. Biosciences, Biotechnology Research Asia, 2018, 15, 671-677.	0.5	0