
John W Pickering

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2143230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Machine learning with D-dimer in the risk stratification for pulmonary embolism: a derivation and internal validation study. European Heart Journal: Acute Cardiovascular Care, 2022, 11, 13-19.	0.4	4
2	Performance of the European Society of Cardiology 0/1-Hour, 0/2-Hour, and 0/3-Hour Algorithms for Rapid Triage of Acute Myocardial Infarction. Annals of Internal Medicine, 2022, 175, 101-113.	2.0	37
3	Sensitivity of modern multislice CT for subarachnoid haemorrhage at incremental timepoints after headache onset: a 10-year analysis. Emergency Medicine Journal, 2022, 39, 810-817.	0.4	0
4	Identifying Candidate Protein Markers of Acute Kidney Injury in Acute Decompensated Heart Failure. International Journal of Molecular Sciences, 2022, 23, 1009.	1.8	0
5	A prospective multi-centre study assessing the safety and effectiveness following the implementation of an accelerated chest pain pathway using point-of-care troponin for use in New Zealand rural hospital and primary care settings. European Heart Journal: Acute Cardiovascular Care, 2022, 11, 418-427.	0.4	4
6	Implementation and evaluation of a rural general practice assessment pathway for possible cardiac chest pain using point-of-care troponin testing: a pilot study. BMJ Open, 2022, 12, e044801.	0.8	3
7	Validation of the myocardial-ischaemic-injury-index machine learning algorithm to guide the diagnosis of myocardial infarction in a heterogenous population: a prespecified exploratory analysis. The Lancet Digital Health, 2022, 4, e300-e308.	5.9	18
8	Emerging microRNA biomarkers for acute kidney injury in acute decompensated heart failure. Heart Failure Reviews, 2021, 26, 1203-1217.	1.7	2
9	Longâ€ŧerm outcomes in patients with pulmonary embolism: results from a longitudinal cohort study. Internal Medicine Journal, 2021, 51, 699-704.	0.5	1
10	Frailty of MÄori, Pasifika, and Non-MÄori/Non-Pasifika Older People in New Zealand: A National Population Study of Older People Referred for Home Care Services. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 1101-1107.	1.7	2
11	Sex-Specific Kinetics of High-Sensitivity Cardiac Troponin I and T following Symptom Onset and Early Presentation in Non-ST-Segment Elevation Myocardial Infarction. Clinical Chemistry, 2021, 67, 321-324.	1.5	11
12	Next-Day Troponin Tests in Real-World Implementation of Baseline Troponin Rule-Out of Myocardial Infarction Demonstrates Minimal Delayed Troponin Rises. Circulation, 2021, 143, 202-204.	1.6	4
13	Emergency department frequent attenders: big data insights for a big and complex problem. Emergency Medicine Journal, 2021, , emermed-2021-211560.	0.4	2
14	Deprescribing to reduce polypharmacy: study protocol for a randomised controlled trial assessing deprescribing of anticholinergic and sedative drugs in a cohort of frail older people living in the community. Trials, 2021, 22, 766.	0.7	3
15	Reducing Patient Risk and Enhancing Care Through the Development and Implementation of a New Chest Pain Pathway, Expedited by and for the COVID-19 Era. Electronic Journal of the International Federation of Clinical Chemistry and Laboratory Medicine, 2021, 32, 27-40.	0.7	0
16	Comparison of two diagnostic protocols in the management of possible cardiac chest pain: One follow-up study in Iran. Caspian Journal of Internal Medicine, 2021, 12, 148-154.	0.1	0
17	Factors influencing physician risk estimates for acute cardiac events in emergency patients with suspected acute coronary syndrome. Emergency Medicine Journal, 2020, 37, 2-7.	0.4	3
18	Early acetaminophen-protein adducts predict hepatotoxicity following overdose (ATOM-5). Journal of Hepatology, 2020, 72, 450-462.	1.8	31

#	Article	IF	CITATIONS
19	Do-lt-Yourself Automated Insulin Delivery: A Leading Example of the Democratization of Medicine. Journal of Diabetes Science and Technology, 2020, 14, 878-882.	1.3	24
20	Neutrophil Gelatinase-Associated Lipocalin Measured on Clinical Laboratory Platforms for the Prediction of Acute Kidney Injury and the Associated Need for Dialysis Therapy: A Systematic Review and Meta-analysis. American Journal of Kidney Diseases, 2020, 76, 826-841.e1.	2.1	80
21	Effect of Capacity to Undertake Instrumental Activities of Daily Living on Entry to Aged Residential Care in Older People With Heart Failure. Frontiers in Medicine, 2020, 7, 386.	1.2	3
22	Prioritizing Candidates of Post–Myocardial Infarction Heart Failure Using Plasma Proteomics and Single-Cell Transcriptomics. Circulation, 2020, 142, 1408-1421.	1.6	50
23	Development and validation of multivariable mortality risk-prediction models in older people undergoing an interRAI home-care assessment (RiskOP). EClinicalMedicine, 2020, 29-30, 100614.	3.2	3
24	Predictors of Residential Care Admission in Community-Dwelling Older People With Dementia. Journal of the American Medical Directors Association, 2020, 21, 1665-1670.	1.2	2
25	Undetectable high-sensitivity troponin in combination with clinical assessment for risk stratification of patients with chest pain and normal troponin at hospital arrival. European Heart Journal: Acute Cardiovascular Care, 2020, 9, 567-575.	0.4	8
26	Early kinetic profiles of troponin I and T measured by high-sensitivity assays in patients with myocardial infarction. Clinica Chimica Acta, 2020, 505, 15-25.	0.5	28
27	<gait a="" an="" and="" at="" death:="" discharge="" emergency<br="" for="" of="" or="" prospective="" readmission="" risk="" speed="" study="">Ward Population. Open Access Emergency Medicine, 2020, Volume 12, 127-135.</gait>	0.6	5
28	Study protocol for an observational study to evaluate an accelerated chest pain pathway using point-of-care troponin in New Zealand rural and primary care populations. Journal of Primary Health Care, 2020, 12, 129.	0.2	5
29	Development of a digital clinical pathway for emergency medicine: Lessons from usability testing and implementation failure. Health Informatics Journal, 2019, 25, 1563-1571.	1.1	8
30	Acute kidney injury in patients presenting with chest pain to the emergency department, a descriptive study of the most common discharge diagnoses and mortality. European Journal of Emergency Medicine, 2019, 26, 242-248.	0.5	4
31	Machine Learning to Predict the Likelihood of Acute Myocardial Infarction. Circulation, 2019, 140, 899-909.	1.6	128
32	Application of High-Sensitivity Troponin in Suspected Myocardial Infarction. New England Journal of Medicine, 2019, 380, 2529-2540.	13.9	230
33	Diagnosis of acute myocardial infarction in the presence of left bundle branch block. Heart, 2019, 105, 1559-1567.	1.2	24
34	The Need to Improve Derivation and Description of Algorithms to Rule-Out Patients With Possible Myocardial Infarction. Circulation, 2019, 139, 1351-1353.	1.6	9
35	Validity of a Novel Point-of-Care Troponin Assay for Single-Test Rule-Out of Acute Myocardial Infarction—Reply. JAMA Cardiology, 2019, 4, 298.	3.0	0
36	Convalescent troponin and cardiovascular death following acute coronary syndrome. Heart, 2019, 105, 1717-1724.	1.2	11

#	Article	IF	CITATIONS
37	Heart failure and the risk of acute kidney injury in relation to ejection fraction in patients undergoing coronary artery bypass grafting. International Journal of Cardiology, 2019, 274, 66-70.	0.8	11
38	Assessment of the 2016 National Institute for Health and Care Excellence high-sensitivity troponin rule-out strategy. Heart, 2018, 104, heartjnl-2017-311983.	1.2	15
39	Association of Nonoxidized Parathyroid Hormone with Cardiovascular and Kidney Disease Outcomes in Chronic Kidney Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2018, 13, 569-576.	2.2	28
40	Combining High-Sensitivity Cardiac Troponin I and Cardiac Troponin T in the Early Diagnosis of Acute Myocardial Infarction. Circulation, 2018, 138, 989-999.	1.6	56
41	Combining Novel Renal Injury Markers with Delta Serum Creatinine Early after Cardiac Surgery and Risk-Stratification for Serious Adverse Outcomes: An Exploratory Analysis. Journal of Cardiothoracic and Vascular Anesthesia, 2018, 32, 2190-2200.	0.6	12
42	Acute Kidney Injury and mortality prognosis in Acute Coronary Syndrome patients: A metaâ€analysis. Nephrology, 2018, 23, 237-246.	0.7	45
43	Response to: "Letter to the Editor for â€~Low Versus Standard Urine Output Targets in Patients Undergoing Major Abdominal Surgery'― Annals of Surgery, 2018, 268, e23.	2.1	0
44	Modification of the Thrombolysis in Myocardial Infarction risk score for patients presenting with chest pain to the emergency department. EMA - Emergency Medicine Australasia, 2018, 30, 47-54.	0.5	5
45	A Risk Assessment Score and Initial Highâ€sensitivity Troponin Combine to Identify Low Risk of Acute Myocardial Infarction in the Emergency Department. Academic Emergency Medicine, 2018, 25, 434-443.	0.8	12
46	ICare-ACS (Improving Care Processes for Patients With Suspected Acute Coronary Syndrome). Circulation, 2018, 137, 354-363.	1.6	32
47	Validity of a Novel Point-of-Care Troponin Assay for Single-Test Rule-Out of Acute Myocardial Infarction. JAMA Cardiology, 2018, 3, 1108.	3.0	60
48	Detectable High-Sensitivity Cardiac Troponin within the Population Reference Interval Conveys High 5-Year Cardiovascular Risk: An Observational Study. Clinical Chemistry, 2018, 64, 1044-1053.	1.5	33
49	The Investigation and Treatment of Women who Present with Acute Chest Pain, Varies Little Compared with Men when Stratified by Risk. Heart Lung and Circulation, 2018, 27, S8.	0.2	Ο
50	Measured Implementation of an Accelerated Chest Pain Diagnostic Pathway in Primary Care. Heart Lung and Circulation, 2018, 27, S4-S5.	0.2	2
51	Clinical chemistry score versus high-sensitivity cardiac troponin I and T tests alone to identify patients at low or high risk for myocardial infarction or death at presentation to the emergency department. Cmaj, 2018, 190, E974-E984.	0.9	38
52	Plasma Neutrophil Gelatinaseâ€Associated Lipocalin diagnosed acute kidney injury in patients with systemic inflammatory disease and sepsis. Nephrology, 2017, 22, 412-419.	0.7	23
53	Neutrophil gelatinase-associated lipocalin (NGAL) fails as an early predictor of contrast induced nephropathy in chronic kidney disease (ANTI-CI-AKI study). Scientific Reports, 2017, 7, 41300.	1.6	19
54	The small number problem in diagnostic algorithms and why we need to bootstrap. Clinical Biochemistry, 2017, 50, 540-541.	0.8	7

#	Article	IF	CITATIONS
55	Low Versus Standard Urine Output Targets in Patients Undergoing Major Abdominal Surgery. Annals of Surgery, 2017, 265, 874-881.	2.1	34
56	Rapid Rule-out of Acute Myocardial Infarction With a Single High-Sensitivity Cardiac Troponin T Measurement Below the Limit of Detection. Annals of Internal Medicine, 2017, 166, 715.	2.0	231
57	Response by Than et al to Letter Regarding Article, "Assessment of the European Society of Cardiology O-Hour/1-Hour Algorithm to Rule-Out and Rule-In Acute Myocardial Infarction― Circulation, 2017, 135, e923-e924.	1.6	0
58	Subclinical chronic kidney disease modifies the diagnosis of experimental acute kidney injury. Kidney International, 2017, 92, 680-692.	2.6	30
59	Dexamethasone Modifies Cystatin C-Based Diagnosis of Acute Kidney Injury During Cisplatin-Based Chemotherapy. Kidney and Blood Pressure Research, 2017, 42, 62-75.	0.9	18
60	National audit of the quality of pain relief provided in emergency departments in <scp>A</scp> otearoa, <scp>N</scp> ew <scp>Z</scp> ealand: <scp>T</scp> he <scp>PRiZED</scp> 1 <scp>S</scp> tudy. EMA - Emergency Medicine Australasia, 2017, 29, 165-172.	0.5	6
61	Direct Comparison of 2 Rule-Out Strategies for Acute Myocardial Infarction: 2-h Accelerated Diagnostic Protocol vs 2-h Algorithm. Clinical Chemistry, 2017, 63, 1227-1236.	1.5	35
62	Acute kidney injury—an overview of diagnostic methods and clinical management. CKJ: Clinical Kidney Journal, 2017, 10, 323-331.	1.4	31
63	Nephrotoxicity-induced proteinuria increases biomarker diagnostic thresholds in acute kidney injury. BMC Nephrology, 2017, 18, 122.	0.8	11
64	Validating the Manchester Acute Coronary Syndromes (MACS) and Troponin-only Manchester Acute Coronary Syndromes (T-MACS) rules for the prediction of acute myocardial infarction in patients presenting to the emergency department with chest pain. Emergency Medicine Journal, 2017, 34, 517-523.	0.4	28
65	Immediate Rule-Out of Acute Myocardial Infarction Using Electrocardiogram and Baseline High-Sensitivity Troponin I. Clinical Chemistry, 2017, 63, 394-402.	1.5	57
66	Comparison of Five Accelerated Diagnostic Protocols for Stratification of Patients Presenting with Acute Chest Pain. Heart Lung and Circulation, 2017, 26, S15.	0.2	0
67	Measured Implementation of an Accelerated Chest Pain Diagnostic Pathway in Primary Care. Heart Lung and Circulation, 2017, 26, S41.	0.2	1
68	Association of High-Sensitivity Cardiac Troponin I Concentration With Cardiac Outcomes in Patients With Suspected Acute Coronary Syndrome. JAMA - Journal of the American Medical Association, 2017, 318, 1913.	3.8	188
69	Mechanism-specific injury biomarkers predict nephrotoxicity early following glyphosate surfactant herbicide (GPSH) poisoning. Toxicology Letters, 2016, 258, 1-10.	0.4	32
70	Validation of NICE diagnostic guidance for rule out of myocardial infarction using high-sensitivity troponin tests. Heart, 2016, 102, 1279-1286.	1.2	26
71	External validation of the emergency department assessment of chest pain score accelerated diagnostic pathway (EDACS-ADP). Emergency Medicine Journal, 2016, 33, 618-625.	0.4	39
72	Impact of High-Sensitivity Troponin I Testing with Sex-Specific Cutoffs on the Diagnosis of Acute Myocardial Infarction. Clinical Chemistry, 2016, 62, 831-838.	1.5	41

#	Article	IF	CITATIONS
73	Effectiveness of EDACS Versus ADAPT Accelerated Diagnostic Pathways for Chest Pain: A Pragmatic Randomized Controlled Trial Embedded Within Practice. Annals of Emergency Medicine, 2016, 68, 93-102.e1.	0.3	107
74	Validation of presentation and 3â€h high-sensitivity troponin to rule-in and rule-out acute myocardial infarction. Heart, 2016, 102, 1270-1278.	1.2	82
75	Use of a least absolute shrinkage and selection operator (LASSO) model to selected ion flow tube mass spectrometry (SIFT-MS) analysis of exhaled breath to predict the efficacy of dialysis: a pilot study. Journal of Breath Research, 2016, 10, 046004.	1.5	9
76	Assessment of the European Society of Cardiology 0-Hour/1-Hour Algorithm to Rule-Out and Rule-In Acute Myocardial Infarction. Circulation, 2016, 134, 1532-1541.	1.6	111
77	Heart Fatty Acid Binding Protein and cardiac troponin: development of an optimal rule-out strategy for acute myocardial infarction. BMC Emergency Medicine, 2016, 16, 34.	0.7	20
78	Bench to bedside: the next steps for biomarkers in acute kidney injury. American Journal of Physiology - Renal Physiology, 2016, 311, F717-F721.	1.3	25
79	Evaluation of High-Sensitivity Cardiac Troponin I Levels in Patients With Suspected Acute Coronary Syndrome. JAMA Cardiology, 2016, 1, 405.	3.0	75
80	Best Albuminuria Measurement to Predict Cardiovascular and Renal Events. American Journal of Nephrology, 2016, 43, 383-388.	1.4	5
81	Two-Hour Algorithm for Triage toward Rule-Out and Rule-In of Acute Myocardial Infarction by Use of High-Sensitivity Cardiac Troponin I. Clinical Chemistry, 2016, 62, 494-504.	1.5	95
82	Time to presentation and 12-month health outcomes in patients presenting to the emergency department with symptoms of possible acute coronary syndrome. Emergency Medicine Journal, 2016, 33, 390-395.	0.4	16
83	External Validation of the Kidney Failure Risk Equation and Re-Calibration with Addition of Ultrasound Parameters. Clinical Journal of the American Society of Nephrology: CJASN, 2016, 11, 609-615.	2.2	34
84	Sex-specific versus overall cut points for a high sensitivity troponin l assay in predicting 1-year outcomes in emergency patients presenting with chest pain. Heart, 2016, 102, 120-126.	1.2	61
85	The diagnostic ability of procalcitonin and interleukin-6 to differentiate infectious from noninfectious systemic inflammatory response syndrome and to predict mortality. Journal of Critical Care, 2016, 33, 245-251.	1.0	52
86	The incremental value of stress testing in patients with acute chest pain beyond serial cardiac troponin testing. Emergency Medicine Journal, 2016, 33, 319-324.	0.4	15
87	A Clinical Decision Rule to Identify Emergency Department Patients at Low Risk for Acute Coronary Syndrome Who Do Not Need Objective Coronary Artery Disease Testing: The No Objective Testing Rule. Annals of Emergency Medicine, 2016, 67, 478-489.e2.	0.3	27
88	Simplification of a scoring system maintained overall accuracy but decreased the proportion classified as low risk. Journal of Clinical Epidemiology, 2016, 69, 32-39.	2.4	12
89	Timely Diagnosis of Acute Kidney Injury Using Kinetic eGFR and the Creatinine Excretion to Production Ratio, E/eG - Creatinine Can Be Useful!. Nephron, 2016, 132, 312-316.	0.9	16
90	Evaluation of biomarkers of cell cycle arrest and inflammation in prediction of dialysis or recovery after kidney transplantation. Transplant International, 2015, 28, 1392-1404.	0.8	38

#	Article	IF	CITATIONS
91	Beware the dog that didn't bark: a tale of creatinine in acute kidney injury. Internal Medicine Journal, 2015, 45, 878-879.	0.5	1
92	Clusterin in Kidney Transplantation. Transplantation, 2015, 99, 171-179.	0.5	46
93	Kinetic Estimation of GFR Improves Prediction of Dialysis and Recovery after Kidney Transplantation. PLoS ONE, 2015, 10, e0125669.	1.1	46
94	SP359PROGNOSTIC VALUE OF THE "ESTIMATED ALBUMIN EXCRETION RATE―TO PREDICT RENAL EVENTS IN CHRONIC KIDNEY DISEASE. Nephrology Dialysis Transplantation, 2015, 30, iii497-iii498.	0.4	0
95	Perioperative change in creatinine following cardiac surgery with cardiopulmonary bypass is useful in predicting acute kidney injury: a single-centre retrospective cohort study. Interactive Cardiovascular and Thoracic Surgery, 2015, 21, 465-469.	0.5	20
96	Acute Kidney Injury and Prognosis After Cardiopulmonary Bypass: A Meta-analysis of Cohort Studies. American Journal of Kidney Diseases, 2015, 65, 283-293.	2.1	204
97	Kidney damage biomarkers detect acute kidney injury but only functional markers predict mortality after paraquat ingestion. Toxicology Letters, 2015, 237, 140-150.	0.4	42
98	The utility of presentation and 4-hour high sensitivity troponin I to rule-out acute myocardial infarction in the emergency department. Clinical Biochemistry, 2015, 48, 1219-1224.	0.8	11
99	FP251THE PROGNOSTIC VALUE OF "ESTIMATED ALBUMIN EXCRETION RATE" (EAER) VERSUS URINE ALBUMIN/CREATININE RATIO (ACR) FOR PREDICTING ADVERSE CARDIOVASCULAR OUTCOME AMONG PATIENTS WITH CHRONIC KIDNEY DISEASE G2-G4. Nephrology Dialysis Transplantation, 2015, 30, iii150-iii151.	0.4	0
100	Comparison of the Performance of 2 GFR Estimating Equations Using Creatinine and Cystatin C to Predict Adverse Outcomes in Elderly Individuals. American Journal of Kidney Diseases, 2015, 65, 636-638.	2.1	8
101	Combining presentation high-sensitivity cardiac troponin I and glucose measurements to rule-out an acute myocardial infarction in patients presenting to emergency department with chest pain. Clinical Biochemistry, 2015, 48, 288-291.	0.8	12
102	Two-hour diagnostic algorithms for early assessment of patients with acute chest pain — Implications of lowering the cardiac troponin I cut-off to the 97.5th percentile. Clinica Chimica Acta, 2015, 445, 19-24.	0.5	12
103	Acute Kidney Injury Urinary Biomarker Time-Courses. PLoS ONE, 2014, 9, e101288.	1.1	10
104	The clinical utility window for acute kidney injury biomarkers in the critically ill. Critical Care, 2014, 18, 601.	2.5	40
105	The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation incorporating both cystatin C and creatinine best predicts individual risk: a cohort study in 444 patients with chronic kidney disease. Nephrology Dialysis Transplantation, 2014, 29, 348-355.	0.4	12
106	Late-onset acute kidney injury—subacute or more of the same?. Nature Reviews Nephrology, 2014, 10, 133-134.	4.1	0
107	A Simple Method to Detect Recovery of Glomerular Filtration Rate following Acute Kidney Injury. BioMed Research International, 2014, 2014, 1-8.	0.9	10
108	Cell cycle arrest biomarkers win race for AKI diagnosis. Nature Reviews Nephrology, 2014, 10, 683-685.	4.1	47

#	Article	IF	CITATIONS
109	The definition and detection of acute kidney injury. Journal of Renal Injury Prevention, 2014, 3, 21-5.	0.6	36
110	Post-infectious glomerulonephritis presenting as acute renal failure in a patient with Lyme disease. Journal of Renal Injury Prevention, 2014, 3, 17-20.	0.6	11
111	Biomarkers and creatinine in AKI: the trough of disillusionment or the slope of enlightenment?. Kidney International, 2013, 84, 644-647.	2.6	25
112	The urine output definition of acute kidney injury is too liberal. Critical Care, 2013, 17, R112.	2.5	109
113	Acute kidney injury clinical trial design: old problems, new strategies. Pediatric Nephrology, 2013, 28, 207-217.	0.9	13
114	Combining creatinine and volume kinetics identifies missed cases of acute kidney injury following cardiac arrest. Critical Care, 2013, 17, R7.	2.5	67
115	The Clinical Utility of Plasma Neutrophil Gelatinase-Associated Lipocalin in Acute Kidney Injury. Blood Purification, 2013, 35, 295-302.	0.9	31
116	Linking Injury to Outcome in Acute Kidney Injury: A Matter of Sensitivity. PLoS ONE, 2013, 8, e62691.	1.1	32
117	High-dose intravenous epoetin does not increase blood pressure in critically ill patients with acute kidney injury. Clinical Nephrology, 2013, 79, 370-379.	0.4	2
118	Albuminuria increases cystatin C excretion: implications for urinary biomarkers. Nephrology Dialysis Transplantation, 2012, 27, iii96-iii103.	0.4	54
119	New Metrics for Assessing Diagnostic Potential of Candidate Biomarkers. Clinical Journal of the American Society of Nephrology: CJASN, 2012, 7, 1355-1364.	2.2	152
120	Test Characteristics of Urinary Biomarkers Depend on Quantitation Method in Acute Kidney Injury. Journal of the American Society of Nephrology: JASN, 2012, 23, 322-333.	3.0	135
121	Four hour creatinine clearance is better than plasma creatinine for monitoring renal function in critically ill patients. Critical Care, 2012, 16, R107.	2.5	61
122	Some biomarkers of acute kidney injury are increased in pre-renal acute injury. Kidney International, 2012, 81, 1254-1262.	2.6	166
123	Challenges facing early detection of acute kidney injury in the critically ill. World Journal of Critical Care Medicine, 2012, 1, 61.	0.8	4
124	Improved performance of urinary biomarkers of acute kidney injury in the critically ill by stratification for injury duration and baseline renal function. Kidney International, 2011, 79, 1119-1130.	2.6	232
125	Breath ammonia and trimethylamine allow real-time monitoring of haemodialysis efficacy. Physiological Measurement, 2011, 32, 115-130.	1.2	88
126	New considerations in the design of clinical trials of acute kidney injury. Clinical Investigation, 2011, 1, 637-650.	0.0	7

#	Article	IF	CITATIONS
127	Was It the Nephrologists or the Fluid?. American Journal of Kidney Diseases, 2011, 58, 154.	2.1	2
128	Predictor of Early Diagnosis, Diagnosis, or Progression of Acute Kidney Injury. Annals of Emergency Medicine, 2011, 57, 75-76.	0.3	0
129	Survivor Bias in Early- vs Late-Start Hemodialysis Studies. Archives of Internal Medicine, 2011, 171, 477.	4.3	1
130	Baseline creatinine: where to from here?. Nephrology Dialysis Transplantation, 2011, 26, 2056-2056.	0.4	5
131	Clearance and beyond: the complementary roles of GFR measurement and injury biomarkers in acute kidney injury (AKI). American Journal of Physiology - Renal Physiology, 2011, 301, F697-F707.	1.3	128
132	New markers of acute kidney injury: giant leaps and baby steps. Clinical Biochemist Reviews, 2011, 32, 121-4.	3.3	14
133	Urinary Soluble HLA-DR Is a Potential Biomarker for Acute Renal Transplant Rejection. Transplantation, 2010, 89, 1071-1078.	0.5	20
134	New and better biomarkers of acute kidney injury. Pathology, 2010, 42, S21.	0.3	0
135	Rapid detection of acute kidney injury by plasma cystatin C in the intensive care unit. Nephrology Dialysis Transplantation, 2010, 25, 3283-3289.	0.4	158
136	Back-Calculating Baseline Creatinine with MDRD Misclassifies Acute Kidney Injury in the Intensive Care Unit. Clinical Journal of the American Society of Nephrology: CJASN, 2010, 5, 1165-1173.	2.2	136
137	Outcome definitions in non-dialysis intervention and prevention trials in acute kidney injury (AKI). Nephrology Dialysis Transplantation, 2010, 25, 107-118.	0.4	30
138	Early intervention with erythropoietin does not affect the outcome of acute kidney injury (the) Tj ETQq0 0 0 rgB1	Verloc	k 10 Tf 50 30
139	Urinary cystatin C is diagnostic of acute kidney injury and sepsis, and predicts mortality in the intensive care unit. Critical Care, 2010, 14, R85.	2.5	124
140	Evaluation of Trial Outcomes in Acute Kidney Injury by Creatinine Modeling. Clinical Journal of the American Society of Nephrology: CJASN, 2009, 4, 1705-1715.	2.2	39
141	RIFLE and AKIN - maintain the momentum and the GFR!. Critical Care, 2009, 13, 416.	2.5	7
142	GFR shot by RIFLE: errors in staging acute kidney injury. Lancet, The, 2009, 373, 1318-1319.	6.3	66
143	Secondary prevention of acute kidney injury. Current Opinion in Critical Care, 2009, 15, 488-497.	1.6	21
144	In vitrodouble-integrating-sphere optical properties of tissues between 630 and 1064 nm. Physics in Medicine and Biology 1997 42, 2255 2261	1.6	159

Medicine and Biology, 1997, 42, 2255-2261. 44

#	Article	IF	CITATIONS
145	Wavelengths for laser treatment of port wine stains and telangiectasia. Lasers in Surgery and Medicine, 1995, 16, 147-155.	1.1	97
146	Ultrastructural alterations in heated canine myocardium. Lasers in Surgery and Medicine, 1995, 17, 39-48.	1.1	3
147	Vessel hyalinization phenomenon in the laser treatment of tuberous hemangiomas and port wine stains. Journal of Dermatological Science, 1995, 9, 70-73.	1.0	5
148	Laser Treatment of Port Wine Stains. , 1995, , 789-829.		34
149	Port-wine stain treatment is wavelength independent in the range 488–620 nm using 200-ms pulses. Lasers in Medical Science, 1994, 9, 91-98.	1.0	Ο
150	Continuous measurement of the heat-induced changes in the optical properties (at 1,064 nm) of rat liver. Lasers in Surgery and Medicine, 1994, 15, 200-205.	1.1	33
151	Optical properties of rat liver and tumor at 633 nm and 1064 nm: Photofrin enhances scattering. Lasers in Surgery and Medicine, 1993, 13, 31-39.	1.1	45
152	Modeling the color perception of port wine stains and its relation to the depth of laser coagulated blood vessels. Lasers in Surgery and Medicine, 1993, 13, 219-226.	1.1	29
153	Changes in the optical properties (at 6328 nm) of slowly heated myocardium. Applied Optics, 1993, 32, 367.	2.1	66
154	Modeling the effect of wavelength on the pulsed dye laser treatment of port wine stains. Applied Optics, 1993, 32, 393.	2.1	74
155	Double-integrating-sphere system for measuring the optical properties of tissue. Applied Optics, 1993, 32, 399.	2.1	380
156	Defining purpura. Journal of the American Academy of Dermatology, 1993, 28, 666.	0.6	0
157	A SIMPLE METHOD TO AVOID DEPRESSED SCARRING IN LASER TREATMENT OF ELEVATED LESIONS. Plastic and Reconstructive Surgery, 1993, 91, 197.	0.7	1
158	Two integrating spheres with an intervening scattering sample. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1992, 9, 621.	0.8	119
159	Monoline argon laser (514 nm) treatment of benign pigmented lesions with long pulse lengths. Journal of Photochemistry and Photobiology B: Biology, 1992, 16, 357-365.	1.7	23
160	The objective reporting of laser treatment of port wine stains. Lasers in Medical Science, 1992, 7, 415-421.	1.0	24
161	Optical property changes as a result of protein denature in albumen and yolk. Journal of Photochemistry and Photobiology B: Biology, 1992, 16, 101-111.	1.7	22
162	The Facial Distribution of Port Wine Stains on Patients Presenting for Laser Treatment. Annals of Plastic Surgery, 1991, 27, 550-552.	0.5	1

#	Article	IF	CITATIONS
163	Laser beam diameter for port wine stain treatment. Lasers in Surgery and Medicine, 1991, 11, 601-605.	1.1	84
164	585 nm for the laser treatment of port wine stains: A possible mechanism. Lasers in Surgery and Medicine, 1991, 11, 616-618.	1.1	41
165	On the scientific reporting of laser surgery. Lasers in Medical Science, 1991, 6, 213-214.	1.0	1
166	A computer controlled scanner for the laser treatment of vascular lesions and hyperpigmentation. Clinical Physics and Physiological Measurement: an Official Journal of the Hospital Physicists' Association, Deutsche Gesellschaft Fur Medizinische Physik and the European Federation of Organisations for Medical Physics, 1991, 12, 261-267.	0.5	17
167	Copper vapour laser treatment of port-wine stains and other vascular malformations. Journal of Plastic, Reconstructive and Aesthetic Surgery, 1990, 43, 273-282.	1.1	82
168	Copper vapour laser treatment of port wine stains: a patient questionnaire. Lasers in Medical Science, 1990, 5, 43-49.	1.0	18
169	Computed temperature distributions around ectatic capillaries exposed to yellow (578 nm) laser light. Physics in Medicine and Biology, 1989, 34, 1247-1258.	1.6	44
170	Histology of port wine stains after copper vapour laser treatment. British Journal of Dermatology, 1989, 121, 217-223.	1.4	58