
Guo-Liang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2143114/publications.pdf Version: 2024-02-01

Спо-Гимс 2нлыс

#	Article	IF	CITATIONS
1	Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 2014, 15, 4958-4983.	2.5	419
2	Seismic stratigraphy of the central South China Sea basin and implications for neotectonics. Journal of Geophysical Research: Solid Earth, 2015, 120, 1377-1399.	3.4	155
3	Evolution of carbonated melt to alkali basalt in the South China Sea. Nature Geoscience, 2017, 10, 229-235.	12.9	100
4	Geochemical nature of sub-ridge mantle and opening dynamics of the South China Sea. Earth and Planetary Science Letters, 2018, 489, 145-155.	4.4	98
5	Magnesium isotopic variation of oceanic island basalts generated by partial melting and crustal recycling. Earth and Planetary Science Letters, 2017, 463, 127-135.	4.4	79
6	Geochemical and isotopic characteristics of volcanic rocks from the northern East China Sea shelf margin and the Okinawa Trough. Acta Oceanologica Sinica, 2010, 29, 48-61.	1.0	37
7	Geochemical constraints on a mixed pyroxenite–peridotite source for East Pacific Rise basalts. Chemical Geology, 2012, 330-331, 176-187.	3.3	29
8	Origin of a native sulfur chimney in the Kueishantao hydrothermal field, offshore northeast Taiwan. Science in China Series D: Earth Sciences, 2007, 50, 1746-1753.	0.9	28
9	Seafloor basalt alteration and chemical change in the ultra thinly sedimented South Pacific. Geochemistry, Geophysics, Geosystems, 2014, 15, 3066-3080.	2.5	28
10	Mantle Source and Magmatic Evolution of the Dying Spreading Ridge in the South China Sea. Geochemistry, Geophysics, Geosystems, 2018, 19, 4385-4399.	2.5	28
11	Geochemical and chronological constraints on the mantle plume origin of the Caroline Plateau. Chemical Geology, 2020, 540, 119566.	3.3	23
12	Geochemistry of basalts from IODP site U1365: Implications for magmatism and mantle source signatures of the mid-Cretaceous Osbourn Trough. Lithos, 2012, 144-145, 73-87.	1.4	21
13	Potassium isotopic composition of low-temperature altered oceanic crust and its impact on the global K cycle. Geochimica Et Cosmochimica Acta, 2021, 311, 59-73.	3.9	20
14	Formation of Fe-oxyhydroxides from the East Pacific Rise near latitude 13°N: Evidence from mineralogical and geochemical data. Science in China Series D: Earth Sciences, 2008, 51, 206-215.	0.9	17
15	Mantle dynamics and generation of a geochemical mantle boundary along the East Pacific Rise – Pacific/Antarctic ridge. Earth and Planetary Science Letters, 2013, 383, 153-163.	4.4	16
16	Interactions of the Greater Ontong Java mantle plume component with the Osbourn Trough. Scientific Reports, 2016, 6, 37561.	3.3	15
17	Deep Fractionation of Clinopyroxene in the East Pacific Rise 13°N: Evidence from High MgO MORB and Melt Inclusions. Acta Geologica Sinica, 2009, 83, 266-277.	1.4	14
18	Elemental and isotopic compositions of the hydrothermal sulfide on the East Pacific Rise near 13°N. Science China Earth Sciences, 2010, 53, 253-266.	5.2	14

GUO-LIANG ZHANG

#	Article	IF	CITATIONS
19	Generation and evolution of magma beneath the East Pacific Rise: Constraints from U-series disequilibrium and plagioclase-hosted melt inclusions. Journal of Volcanology and Geothermal Research, 2010, 193, 1-17.	2.1	14
20	Compositional and temperature variations of the Pacific upper mantle since the Cretaceous. Acta Oceanologica Sinica, 2016, 35, 19-25.	1.0	14
21	Evidence for the essential role of CO2 in the volcanism of the waning Caroline mantle plume. Geochimica Et Cosmochimica Acta, 2020, 290, 391-407.	3.9	14
22	Geochemical and Geochronological Constraints on the Origin and Emplacement of the East Taiwan Ophiolite. Geochemistry, Geophysics, Geosystems, 2019, 20, 2110-2133.	2.5	12
23	Genesis of Intermediate and Silicic Arc Magmas Constrained by Nb/Ta Fractionation. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020708.	3.4	12
24	Geochemical constraints on mantle source nature and recycling of subducted sediments in the Sulu Sea. Geosystems and Geoenvironment, 2022, 1, 100005.	3.2	12
25	Element enrichment and U-series isotopic characteristics of the hydrothermal sulfides at Jade site in the Okinawa Trough. Science in China Series D: Earth Sciences, 2009, 52, 913-924.	0.9	10
26	Geochemical and chronological evidence for collision of proto-Yap arc/Caroline plateau and rejuvenated plate subduction at Yap trench. Lithos, 2020, 370-371, 105616.	1.4	9
27	Sub-basin scale inhomogeneity of mantle in the South China Sea revealed by magnesium isotopes. Science Bulletin, 2021, 66, 740-748.	9.0	9
28	Periodical mixing of MORB magmas near East Pacific Rise 13°N: evidence from modeling and zoned plagioclase phenocrysts. Science in China Series D: Earth Sciences, 2008, 51, 1786-1801.	0.9	6
29	Application of calcite, Mgâ€calcite, and dolomite as Raman pressure sensors for highâ€pressure, highâ€temperature studies. Journal of Raman Spectroscopy, 2020, 51, 1248-1259.	2.5	6
30	Magma mixing in upper mantle: Evidence from high Mg# olivine hosted melt inclusions in MORBs near East Pacific Rise 13ŰN. Science Bulletin, 2010, 55, 1643-1656.	1.7	5
31	Origin of arc-like intraplate volcanism by melting of lithospheric mantle pyroxenite of the South China continental margin. Lithos, 2021, 396-397, 106236.	1.4	5
32	Subduction of the paleo-Pacific plate recorded by arc volcanism in the South China Sea margin. Gondwana Research, 2022, 110, 58-72.	6.0	5
33	Constraints of barium isotopes on recycling of ancient oceanic crust in the mantle of the South China Sea. Journal of Volcanology and Geothermal Research, 2022, 429, 107608.	2.1	4
34	Talc-bearing serpentinized peridotites from the southern Mariana forearc: implications for aseismic character within subduction zones. Chinese Journal of Oceanology and Limnology, 2009, 27, 667-673.	0.7	3
35	Trace element composition of peridotites from the southern Mariana forearc: Insights into the geochemical effects of serpentinization and/or seafloor weathering. Chinese Journal of Oceanology and Limnology, 2009, 27, 985-992.	0.7	3
36	Genesis of anhydrite in hydrothermally altered basalt from the East Pacific Rise near 13°N. Acta Oceanologica Sinica, 2013, 32, 12-17.	1.0	3

GUO-LIANG ZHANG

#	Article	IF	CITATIONS
37	Geochemical constraints on CO2-rich mantle source for the Kocebu Seamount, Magellan Seamount chain in the western Pacific. Journal of Oceanology and Limnology, 2020, 38, 1201-1214.	1.3	3
38	Recycling of carbon from the stagnant paleo-Pacific slab beneath Eastern China revealed by olivine geochemistry. Lithos, 2021, 398-399, 106249.	1.4	3
39	Iron isotope constraints on the lithological heterogeneity of the upper mantle in the South China Sea. Journal of Asian Earth Sciences, 2021, 220, 104934.	2.3	3
40	Geochemical anomalies of hydrothermal plume at EPR 13°N. Science in China Series D: Earth Sciences, 2007, 50, 1433-1440.	0.9	2
41	Control of subduction rate on Tonga-Kermadec arc magmatism. Journal of Oceanology and Limnology, 2018, 36, 687-699.	1.3	2
42	Post-spreading volcanism triggered by CO2 along the South China Sea fossil spreading axis. Lithos, 2021, 404-405, 106478.	1.4	1
43	Origin of highâ€ <scp>Mg</scp> arc volcanism and fate of subducted sedimentary carbonates in the western Pacific: Evidence from partial melting experiments on mixed sediment and peridotite. Geological Journal, 2022, 57, 425-439.	1.3	1
44	Geochemical constraints on source nature and recycled oceanic crust in the mantle of the Celebes Sea. Lithos, 2022, 418-419, 106685.	1.4	1
45	Genesis of 230Th excess in basalts from mid-ocean ridges and ocean islands: Constraints from the global U-series isotope database and major and rare earth element geochemistry. Science China Earth Sciences, 2010, 53, 1486-1494.	5.2	0
46	Introduction to "tectonics and sedimentation of Southeast Asian continental margin and marginal seasâ€: Marine Geophysical Researches, 2015, 36, 99-100.	1.2	0