

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/214294/publications.pdf Version: 2024-02-01

ΙιλΝΙ ΧΤΙ

#	Article	IF	CITATIONS
1	Improving xylo-oligosaccharides yield from corn stalk with stepwise enzymolysis. Biomass Conversion and Biorefinery, 2023, 13, 3863-3869.	4.6	2
2	C1 gas protein: A potential protein substitute for advancing aquaculture sustainability. Reviews in Aquaculture, 2023, 15, 1179-1197.	9.0	12
3	Synergistic effect of acidity balance and hydrothermal pretreatment severity on alkali extraction of hemicelluloses from corn stalk. Biomass Conversion and Biorefinery, 2022, 12, 459-468.	4.6	8
4	Structural characterizations of lignins extracted under same severity using different acids. International Journal of Biological Macromolecules, 2022, 194, 204-212.	7.5	13
5	Two magma fractionation paths for continental crust growth: Insights from the adakite-like and normal-arc granites in the Ailaoshan fold belt (SW Yunnan, China). Bulletin of the Geological Society of America, 2022, 134, 2986-3002.	3.3	3
6	Structure and integrity of sequentially extracted lignin during poplar (alkaline) pretreatment. Process Biochemistry, 2022, 117, 198-208.	3.7	4
7	Ethanol-Assisted Hydrothermal Liquefaction of Poplar Using Fe-Co/Al2O3 as Catalyst. Energies, 2022, 15, 3057.	3.1	3
8	Identification of High δ ¹⁸ O Adakiteâ€Like Granites in SE Tibet: Implication for Diapiric Relamination of Subducted Sediments. Geophysical Research Letters, 2022, 49, .	4.0	3
9	Structural insight into a GH1 β-glucosidase from the oleaginous microalga, Nannochloropsis oceanica. International Journal of Biological Macromolecules, 2021, 170, 196-206.	7.5	10
10	Fundamentals of Lignin-Carbohydrate Complexes and Its Effect on Biomass Utilization. , 2021, , 133-155.		2
11	High-Temperature Resistant Polyborosilazanes with Tailored Structures. Polymers, 2021, 13, 467.	4.5	2
12	A simple coupled ANNsâ€RSM approach in modeling product distribution of Fischerâ€Tropsch synthesis using a microchannel reactor with Ruâ€promoted Co/Al ₂ O ₃ catalyst. International Journal of Energy Research, 2020, 44, 1046-1061.	4.5	16
13	Efficient CO2 capture by a novel deep eutectic solvent through facile, one-pot synthesis with low energy consumption and feasible regeneration. Science of the Total Environment, 2020, 705, 135798.	8.0	41
14	Robust Computation of 3D Apollonius Diagrams. Computer Graphics Forum, 2020, 39, 43-55.	3.0	4
15	Effect of elastic and thermal mismatch on push-in mechanism and shear strength measurement of fiber/matrix interface. Composite Interfaces, 2020, 27, 921-935.	2.3	12
16	Lignin-carbohydrate complexes (LCCs) and its role in biorefinery. Journal of Cleaner Production, 2020, 253, 120076.	9.3	83
17	Ultrasensitive micro/nanocrack-based graphene nanowall strain sensors derived from the substrate's Poisson's ratio effect. Journal of Materials Chemistry A, 2020, 8, 10310-10317.	10.3	28
18	Screening of acidic and alkaline pretreatments for walnut shell and corn stover biorefining using two way heterogeneity evaluation. Renewable Energy, 2019, 132, 950-958.	8.9	39

Jian Xu

#	Article	IF	CITATIONS
19	Treatment of different parts of corn stover for high yield and lower polydispersity lignin extraction with high-boiling alkaline solvent. Bioresource Technology, 2018, 249, 737-743.	9.6	32
20	Bioactivity of fucoidan extracted from Laminaria japonica using a novel procedure with high yield. Food Chemistry, 2018, 245, 911-918.	8.2	74
21	Activated mitochondrial apoptosis in hESCs after dissociation involving the PKA/p-p53/Bax signaling pathway. Experimental Cell Research, 2018, 369, 226-233.	2.6	14
22	Polyurethane foams from alkaline ligninâ€based polyether polyol. Journal of Applied Polymer Science, 2016, 133, .	2.6	16
23	Biopolyol preparation from liquefaction of grape seeds. Journal of Applied Polymer Science, 2016, 133, .	2.6	9
24	The effect of non-structural components and lignin on hemicellulose extraction. Bioresource Technology, 2016, 214, 755-760.	9.6	40
25	A novel stepwise pretreatment on corn stalk by alkali deacetylation and liquid hot water for enhancing enzymatic hydrolysis and energy utilization efficiency. Bioresource Technology, 2016, 209, 115-124.	9.6	27
26	Changes on structural properties of biomass pretreated by combined deacetylation with liquid hot water and its effect on enzymatic hydrolysis. Bioresource Technology, 2016, 220, 448-456.	9.6	23
27	One-pot conversion of disaccharide into 5-hydroxymethylfurfural catalyzed by imidazole ionic liquid. Scientific Reports, 2016, 6, 26067.	3.3	34
28	Miscibility and Crystallization Behavior of Poly (Ethylene Terephthalate)/Phosphate Glass Hybrids. Journal of Macromolecular Science - Physics, 2016, 55, 1039-1050.	1.0	5
29	Effects of Impurities in Alkali-Extracted Xylan on Its Enzymatic Hydrolysis to Produce Xylo-Oligosaccharides. Applied Biochemistry and Biotechnology, 2016, 179, 740-752.	2.9	21
30	Microwave irradiation – A green and efficient way to pretreat biomass. Bioresource Technology, 2016, 199, 34-41.	9.6	177
31	Microwave Pretreatment. , 2015, , 157-172.		31
32	Comparison on structural modification of industrial lignin by wet ball milling and ionic liquid pretreatment. Biotechnology Reports (Amsterdam, Netherlands), 2015, 6, 1-7.	4.4	57
33	Microwave-Assisted Conversion of Lignin. Biofuels and Biorefineries, 2015, , 61-82.	0.5	17
34	Genomic Foundation of Starch-to-Lipid Switch in Oleaginous <i>Chlorella</i> spp Plant Physiology, 2015, 169, 2444-2461.	4.8	111
35	Liquid hot water pretreatment on different parts of cotton stalk to facilitate ethanol production. Bioresource Technology, 2015, 176, 175-180.	9.6	56
36	Effect of acetylation/deacetylation on enzymatic hydrolysis of corn stalk. Biomass and Bioenergy, 2014, 71, 294-298.	5.7	22

Jian Xu

#	Article	IF	CITATIONS
37	pH pre-corrected liquid hot water pretreatment on corn stover with high hemicellulose recovery and low inhibitors formation. Bioresource Technology, 2014, 153, 292-299.	9.6	65
38	Bioconversion of different sizes of microcrystalline cellulose pretreated by microwave irradiation with/without NaOH. Applied Energy, 2014, 117, 142-148.	10.1	54
39	Improved bioethanol production from corn stover by alkali pretreatment with a novel pilot-scale continuous microwave irradiation reactor. Biotechnology and Bioprocess Engineering, 2014, 19, 493-502.	2.6	20
40	Microwave-assisted conversion of microcrystalline cellulose to 5-hydroxymethylfurfural catalyzed by ionic liquids. Bioresource Technology, 2014, 162, 358-364.	9.6	62
41	Pretreatment on Miscanthus lutarioriparious by liquid hot water for efficient ethanol production. Biotechnology for Biofuels, 2013, 6, 76.	6.2	70
42	A new correction method for determination on carbohydrates in lignocellulosic biomass. Bioresource Technology, 2013, 138, 373-376.	9.6	29
43	A novel combined pretreatment of ball milling and microwave irradiation for enhancing enzymatic hydrolysis of microcrystalline cellulose. Bioresource Technology, 2013, 130, 81-87.	9.6	80
44	Optimization of microwave-assisted calcium chloride pretreatment of corn stover. Bioresource Technology, 2013, 127, 112-118.	9.6	44
45	Optimization of microwave pretreatment on wheat straw for ethanol production. Biomass and Bioenergy, 2011, 35, 3859-3864.	5.7	71
46	Numerical and experimental investigations for an air cannon optimization. Science China Technological Sciences, 2011, 54, 345-351.	4.0	4
47	Thermal regime of a thermokarst lake and its influence on permafrost, Beiluhe Basin, Qinghaiâ€Tibet Plateau. Permafrost and Periglacial Processes, 2010, 21, 315-324.	3.4	96
48	Investigation of acetic acid-catalyzed hydrothermal pretreatment on corn stover. Applied Microbiology and Biotechnology, 2010, 86, 509-516.	3.6	27
49	Feasibility of Hydrothermal Pretreatment on Maize Silage for Bioethanol Production. Applied Biochemistry and Biotechnology, 2010, 162, 33-42.	2.9	27
50	Ethanol production from hydrothermal pretreated corn stover with a loop reactor. Biomass and Bioenergy, 2010, 34, 334-339.	5.7	24
51	Recovery of arabinan in acetic acid-catalyzed hydrothermal pretreatment on corn stover. Biomass and Bioenergy, 2009, 33, 1660-1663.	5.7	9
52	Enzymatic hydrolysis and fermentability of corn stover pretreated by lactic acid and/or acetic acid. Journal of Biotechnology, 2009, 139, 300-305.	3.8	51
53	Optimization of ethanol production from hot-water extracts of sugar maple chips. Renewable Energy, 2009, 34, 2353-2356.	8.9	8
54	Simultaneous saccharification and fermentation of steam exploded wheat straw pretreated with alkaline peroxide. Process Biochemistry, 2008, 43, 1462-1466.	3.7	124

Jian Xu

#	Article	IF	CITATIONS
55	A Novel Stepwise Recovery Strategy of Cellulase Adsorbed to the Residual Substrate after Hydrolysis of Steam Exploded Wheat Straw. Applied Biochemistry and Biotechnology, 2007, 143, 93-100.	2.9	6
56	Temperature control at different bed depths in a novel solid-state fermentation system with two dynamic changes of air. Biochemical Engineering Journal, 2005, 23, 117-122.	3.6	49
57	Polysilsesquioxane Nanosheets Synthesized in Confined Environment. Macromolecular Rapid Communications, 2003, 24, 676-680.	3.9	1
58	Polyurethane foam from grape-seed-based polyol. Green Materials, 0, , 1-8.	2.1	1