List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2142770/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetite Particles Triggering a Faster and More Robust Syntrophic Pathway of Methanogenic Propionate Degradation. Environmental Science & Technology, 2014, 48, 7536-7543.	4.6	557
2	Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): State of knowledge and research perspectives. Journal of Hazardous Materials, 2014, 278, 189-202.	6.5	251
3	Identity, abundance and ecophysiology of filamentous Chloroflexi species present in activated sludge treatment plants. FEMS Microbiology Ecology, 2007, 59, 671-682.	1.3	210
4	Electron Transfer from a Solid-State Electrode Assisted by Methyl Viologen Sustains Efficient Microbial Reductive Dechlorination of TCE. Environmental Science & Technology, 2007, 41, 2554-2559.	4.6	191
5	"Microthrix parvicellaâ€, a filamentous bacterium causing bulking and foaming in activated sludge systems: a review of current knowledge. FEMS Microbiology Reviews, 2005, 29, 49-64.	3.9	176
6	Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators. Biotechnology and Bioengineering, 2009, 103, 85-91.	1.7	139
7	Relevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors. Water Research, 2007, 41, 27-38.	5.3	123
8	In situ analysis of native microbial communities in complex samples with high particulate loads. FEMS Microbiology Letters, 2005, 253, 55-58.	0.7	114
9	Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethene. Biosensors and Bioelectronics, 2010, 25, 1796-1802.	5.3	113
10	Filamentous Alphaproteobacteria Associated with Bulking in Industrial Wastewater Treatment Plants. Systematic and Applied Microbiology, 2004, 27, 716-727.	1.2	109
11	Trichloroethene Dechlorination and H ₂ Evolution Are Alternative Biological Pathways of Electric Charge Utilization by a Dechlorinating Culture in a Bioelectrochemical System. Environmental Science & Technology, 2008, 42, 6185-6190.	4.6	96
12	In situ groundwater and sediment bioremediation: barriers and perspectives at European contaminated sites. New Biotechnology, 2015, 32, 133-146.	2.4	95
13	Microplastic-associated biofilms in lentic Italian ecosystems. Water Research, 2020, 187, 116429.	5.3	95
14	Anaerobic arsenite oxidation with an electrode serving as the sole electron acceptor: A novel approach to the bioremediation of arsenic-polluted groundwater. Journal of Hazardous Materials, 2015, 283, 617-622.	6.5	94
15	Metabolic model for the filamentous â€~ <i>Candidatus</i> Microthrix parvicella' based on genomic and metagenomic analyses. ISME Journal, 2013, 7, 1161-1172.	4.4	93
16	Microbial characterisation of polyhydroxyalkanoates storing populations selected under different operating conditions using a cell-sorting RT-PCR approach. Applied Microbiology and Biotechnology, 2008, 78, 351-360.	1.7	85
17	Phylogenetic Characterization and In Situ Detection of a Cytophaga-Flexibacter-Bacteroides Phylogroup Bacterium in Tuber borchii Vittad. Ectomycorrhizal Mycelium. Applied and Environmental Microbiology, 2000, 66, 5035-5042.	1.4	83
18	Thermophilic anaerobic digestion of thermal pretreated sludge: Role of microbial community structure and correlation with process performances. Water Research, 2015, 68, 498-509.	5.3	80

#	Article	IF	CITATIONS
19	'Candidatus Nostocoida limicola', a filamentous bacterium from activated sludge International Journal of Systematic and Evolutionary Microbiology, 2000, 50, 703-709.	0.8	77
20	Comparative study of methanol, butyrate, and hydrogen as electron donors for longâ€ŧerm dechlorination of tetrachloroethene in mixed anerobic cultures. Biotechnology and Bioengineering, 2005, 91, 743-753.	1.7	73
21	Bioelectrochemical hydrogen production with hydrogenophilic dechlorinating bacteria as electrocatalytic agents. Bioresource Technology, 2011, 102, 3193-3199.	4.8	73
22	High frequency ultrasound pretreatment for sludge anaerobic digestion: Effect on floc structure and microbial population. Bioresource Technology, 2012, 110, 43-49.	4.8	73
23	Organic Fraction of Municipal Solid Waste Recovery by Conversion into Added-Value Polyhydroxyalkanoates and Biogas. ACS Sustainable Chemistry and Engineering, 2018, 6, 16375-16385.	3.2	73
24	Conductive Magnetite Nanoparticles Accelerate the Microbial Reductive Dechlorination of Trichloroethene by Promoting Interspecies Electron Transfer Processes. ChemSusChem, 2013, 6, 433-436.	3.6	72
25	PHA production by mixed cultures: A way to valorize wastes from pulp industry. Bioresource Technology, 2014, 157, 197-205.	4.8	70
26	Ecology and biotechnological potential of the thermophilic fermentative Coprothermobacter spp FEMS Microbiology Ecology, 2015, 91, .	1.3	66
27	A chemically enhanced biological process for lowering operative costs and solid residues of industrial recalcitrant wastewater treatment. Water Research, 2010, 44, 3635-3644.	5.3	62
28	Analysis of the microbial community structure and function of a laboratory scale enhanced biological phosphorus removal reactor. Environmental Microbiology, 2002, 4, 559-569.	1.8	61
29	The "Oil-Spill Snorkel†an innovative bioelectrochemical approach to accelerate hydrocarbons biodegradation in marine sediments. Frontiers in Microbiology, 2015, 6, 881.	1.5	60
30	Polychlorinated biphenyl (PCB) anaerobic degradation in marine sediments: microcosm study and role of autochthonous microbial communities. Environmental Science and Pollution Research, 2016, 23, 12613-12623.	2.7	58
31	Marine hydrocarbon-degrading bacteria breakdown poly(ethylene terephthalate) (PET). Science of the Total Environment, 2020, 749, 141608.	3.9	57
32	Thiothrix caldifontis sp. nov. and Thiothrix lacustris sp. nov., gammaproteobacteria isolated from sulfide springs. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 3128-3135.	0.8	56
33	Phylogenetic analysis and in situ identification of "Nostocoida limicola―like filamentous bacteria in activated sludge from industrial wastewater treatment plants. Water Science and Technology, 2002, 46, 99-104.	1.2	52
34	SBBCR technology for minimising excess sludge production in biological processes. Water Research, 2010, 44, 1825-1832.	5.3	49
35	Quantitative estimation of Dehalococcoides mccartyi at laboratory and field scale: Comparative study between CARD-FISH and Real Time PCR. Journal of Microbiological Methods, 2013, 93, 127-133.	0.7	49
36	A Genomic Outlook on Bioremediation: The Case of Arsenic Removal. Frontiers in Microbiology, 2018, 9, 820.	1.5	49

#	Article	IF	CITATIONS
37	Cable Bacteria and the Bioelectrochemical Snorkel: The Natural and Engineered Facets Playing a Role in Hydrocarbons Degradation in Marine Sediments. Frontiers in Microbiology, 2017, 8, 952.	1.5	48
38	Biological As(III) oxidation in biofilters by using native groundwater microorganisms. Science of the Total Environment, 2019, 651, 93-102.	3.9	48
39	Enhancing a multi-stage process for olive oil mill wastewater valorization towards polyhydroxyalkanoates and biogas production. Chemical Engineering Journal, 2017, 317, 280-289.	6.6	46
40	Arsenic removal from naturally contaminated waters: a review of methods combining chemical and biological treatments. Rendiconti Lincei, 2016, 27, 51-58.	1.0	45
41	Phylogeny, physiology and distribution of 'Candidatus Microthrix calida', a new Microthrix species isolated from industrial activated sludge wastewater treatment plants. Environmental Microbiology, 2006, 8, 1552-1563.	1.8	44
42	Arsenic removal by discontinuous ZVI two steps system for drinking water production at household scale. Water Research, 2016, 106, 135-145.	5.3	44
43	Polyhydroxyalkanoate as a slow-release carbon source for in situ bioremediation of contaminated aquifers: From laboratory investigation to pilot-scale testing in the field. New Biotechnology, 2017, 37, 60-68.	2.4	44
44	Parallel artificial and biological electric circuits power petroleum decontamination: The case of snorkel and cable bacteria. Water Research, 2020, 173, 115520.	5.3	44
45	Synthesis of intracellular storage polymers by Amaricoccus kaplicensis, a tetrad forming bacterium present in activated sludge. Journal of Applied Microbiology, 2001, 91, 299-305.	1.4	43
46	Arsenic-related microorganisms in groundwater: a review on distribution, metabolic activities and potential use in arsenic removal processes. Reviews in Environmental Science and Biotechnology, 2017, 16, 647-665.	3.9	42
47	Granular biomass structure and population dynamics in Sequencing Batch Biofilter Granular Reactor (SBBGR). Bioresource Technology, 2010, 101, 2152-2158.	4.8	41
48	Bioelectrochemically-assisted reductive dechlorination of 1,2-dichloroethane by a Dehalococcoides- enriched microbial culture. Bioresource Technology, 2015, 195, 78-82.	4.8	41
49	Long-term anaerobic digestion of food waste at semi-pilot scale: Relationship between microbial community structure and process performances. Biomass and Bioenergy, 2018, 118, 55-64.	2.9	41
50	Kinetic and phylogenetic characterization of an anaerobic dechlorinating microbial community. Microbiology (United Kingdom), 2003, 149, 459-469.	0.7	40
51	Electrochemical stimulation of microbial cis-dichloroethene (cis-DCE) oxidation by an ethene-assimilating culture. New Biotechnology, 2013, 30, 749-755.	2.4	40
52	Microbiome Dynamics of a Polychlorobiphenyl (PCB) Historically Contaminated Marine Sediment under Conditions Promoting Reductive Dechlorination. Frontiers in Microbiology, 2016, 7, 1502.	1.5	40
53	Detection and quantitative estimation of Dehalococcoides spp. in a dechlorinating bioreactor by a combination of fluorescent in situ hybridisation (FISH) and kinetic analysis. Applied Microbiology and Biotechnology, 2004, 64, 206-212.	1.7	39
54	Microbial community analysis with a high PHA storage capacity. Water Science and Technology, 2006, 54, 183-188.	1.2	39

#	Article	IF	CITATIONS
55	Structure analysis and performance of a microbial community from a contaminated aquifer involved in the complete reductive dechlorination of 1,1,2,2â€ŧetrachloroethane to ethene. Biotechnology and Bioengineering, 2008, 100, 240-249.	1.7	39
56	Biopolymers from Urban Organic Waste: Influence of the Solid Retention Time to Cycle Length Ratio in the Enrichment of a Mixed Microbial Culture (MMC). ACS Sustainable Chemistry and Engineering, 2020, 8, 14531-14539.	3.2	39
57	Combining electrokinetic transport and bioremediation for enhanced removal of crude oil from contaminated marine sediments: Results of a long-term, mesocosm-scale experiment. Water Research, 2019, 157, 381-395.	5.3	38
58	Control strategy for filamentous sludge bulking: Bench-scale test and full-scale application. Chemosphere, 2018, 210, 709-716.	4.2	37
59	Direct Conversion of Food Waste Extract into Caproate: Metagenomics Assessment of Chain Elongation Process. Microorganisms, 2021, 9, 327.	1.6	37
60	Dynamics of phosphorus and organic substrates in anaerobic and aerobic phases of a sequencing batch reactor. Water Science and Technology, 1994, 30, 237-246.	1.2	37
61	Improved quantification of Dehalococcoides species by fluorescence in situ hybridization and catalyzed reporter deposition. Systematic and Applied Microbiology, 2008, 31, 62-67.	1.2	36
62	Anaerobic co-digestion of food waste and waste activated sludge: ADM1 modelling and microbial analysis to gain insights into the two substrates' synergistic effects. Waste Management, 2019, 97, 27-37.	3.7	36
63	Kinetics of denitrification reactions in single sludge systems. Water Research, 1996, 30, 51-56.	5.3	35
64	Unravelling the core microbiome of biofilms in cooling tower systems. Biofouling, 2017, 33, 793-806.	0.8	35
65	Biofilm growth and control in cooling water industrial systems. FEMS Microbiology Ecology, 2018, 94, .	1.3	35
66	The characterization and description of representatives of â€~G' bacteria from activated sludge plants. Letters in Applied Microbiology, 1997, 25, 63-69.	1.0	32
67	Simultaneous biological removal of sulphide and nitrate by autotrophic denitrification in an activated sludge system. Water Science and Technology, 2006, 53, 91-99.	1.2	32
68	Phylogenetic and physiological characterization of a heterotrophic, chemolithoautotrophic Thiothrix strain isolated from activated sludge. International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 1271-1276.	0.8	31
69	Influence of mediator immobilization on the electrochemically assisted microbial dechlorination of trichloroethene (TCE) and <i>cis</i> â€dichloroethene (<i>cis</i> â€DCE). Journal of Chemical Technology and Biotechnology, 2009, 84, 864-870.	1.6	31
70	Microbial diversity in innovative mesophilic/thermophilic temperature-phased anaerobic digestion of sludge. Environmental Science and Pollution Research, 2015, 22, 7339-7348.	2.7	31
71	Electrolysis-driven bioremediation of crude oil-contaminated marine sediments. New Biotechnology, 2017, 38, 84-90.	2.4	31
72	Microbial Community Changes in a Chlorinated Solvents Polluted Aquifer Over the Field Scale Treatment With Poly-3-Hydroxybutyrate as Amendment. Frontiers in Microbiology, 2018, 9, 1664.	1.5	31

#	Article	IF	CITATIONS
73	Phenotypic and phylogenetic description of an Italian isolate of " Microthrix parvicella â€: Journal of Applied Microbiology, 1997, 82, 405-410.	1.4	30
74	Bridging spatially segregated redox zones with a microbial electrochemical snorkel triggers biogeochemical cycles in oil-contaminated River Tyne (UK) sediments. Water Research, 2017, 127, 11-21.	5.3	30
75	Optimization of short chain volatile fatty acids production from household food waste for biorefinery applications. Environmental Technology and Innovation, 2021, 23, 101562.	3.0	30
76	"Microthrix parvicella― a new approach for kinetic and physiological characterization. Water Science and Technology, 2002, 46, 65-72.	1.2	29
77	Reductive dechlorination of tetrachloroethene in marine sediments: Biodiversity and dehalorespiring capabilities of the indigenous microbes. Science of the Total Environment, 2016, 545-546, 445-452.	3.9	28
78	Microbial and kinetic characterization of pure and mixed cultures aerobically degrading 4-nitrophenol. Chemosphere, 2006, 63, 1801-1808.	4.2	27
79	Field distribution and activity of chlorinated solvents degrading bacteria by combining CARD-FISH and real time PCR. New Biotechnology, 2012, 30, 23-32.	2.4	27
80	Electrically conductive magnetite particles enhance the kinetics and steer the composition of anaerobic TCE-dechlorinating cultures. Process Biochemistry, 2014, 49, 2235-2240.	1.8	27
81	Microbiome dynamics and phaC synthase genes selected in a pilot plant producing polyhydroxyalkanoate from the organic fraction of urban waste. Science of the Total Environment, 2019, 689, 765-773.	3.9	27
82	Interspecies metabolite transfer and aggregate formation in a co-culture of <i>Dehalococcoides</i> and <i>Sulfurospirillum</i> dehalogenating tetrachloroethene to ethene. ISME Journal, 2021, 15, 1794-1809.	4.4	27
83	Factors affecting the growth of Microthrix parvicella: Batch tests using bulking sludge as seed sludge. Science of the Total Environment, 2017, 609, 1192-1199.	3.9	26
84	Reductive/oxidative sequential bioelectrochemical process for Perchloroethylene (PCE) removal: effect of the applied reductive potential and microbial community characterization. Journal of Environmental Chemical Engineering, 2021, 9, 104657.	3.3	26
85	High concentrations of dissolved biogenic methane associated with cyanobacterial blooms in East African lake surface water. Communications Biology, 2021, 4, 845.	2.0	26
86	Remediation of PCE-contaminated groundwater from an industrial site in southern Italy: A laboratory-scale study. Process Biochemistry, 2007, 42, 1498-1505.	1.8	25
87	Short-term and long-term effects on carbon storage of pulse feeding on acclimated or unacclimated activated sludge. Water Research, 2011, 45, 3119-3128.	5.3	25
88	Effective treatment of stabilized municipal landfill leachates. Chemical Engineering Journal, 2011, 168, 1085-1092.	6.6	25
89	Enrichment of Dehalococcoides mccartyi spp. from a municipal activated sludge during AQDS-mediated bioelectrochemical dechlorination of 1,2-dichloroethane to ethene. Bioresource Technology, 2016, 214, 426-431.	4.8	25
90	Biodegradation of UV-filters in marine sediments. Science of the Total Environment, 2017, 575, 448-457.	3.9	25

6

#	Article	IF	CITATIONS
91	Anaerobic digestion of mixed urban biowaste: The microbial community shift towards stability. New Biotechnology, 2020, 55, 108-117.	2.4	24
92	Enrichment of a mixed microbial culture of PHA-storing microorganisms by using fermented hardwood spent sulfite liquor. New Biotechnology, 2020, 56, 79-86.	2.4	23
93	Enhanced bioremediation of methyl tert-butyl ether (MTBE) by microbial consortia obtained from contaminated aquifer material. Chemosphere, 2009, 75, 149-155.	4.2	22
94	First evidence on the occurrence and dynamics of Dehalococcoides mccartyi PCB-dechlorinase genes in marine sediment during Aroclor1254 reductive dechlorination. Marine Pollution Bulletin, 2016, 112, 189-194.	2.3	22
95	Unveiling PHA-storing populations using molecular methods. Applied Microbiology and Biotechnology, 2015, 99, 10433-10446.	1.7	21
96	High-throughput sequencing revealed novel Dehalococcoidia in dechlorinating microbial enrichments from PCB-contaminated marine sediments. FEMS Microbiology Ecology, 2017, 93, .	1.3	21
97	Some physiological properties of an Italian isolate of "microthrix parvicella― Water Science and Technology, 1998, 37, 1-8.	1.2	20
98	Phage-host associations in a full-scale activated sludge plant during sludge bulking. Applied Microbiology and Biotechnology, 2017, 101, 6495-6504.	1.7	20
99	Different activity levels of Dehalococcoides mccartyi revealed by FISH and CARD-FISH under non-steady and pseudo-steady state conditions. New Biotechnology, 2013, 30, 756-762.	2.4	19
100	Microbiome profiling in extremely acidic soils affected by hydrothermal fluids: the case of the Solfatara Crater (Campi Flegrei, southern Italy). FEMS Microbiology Ecology, 2018, 94, .	1.3	19
101	CARD-FISH analysis of a TCE-dechlorinating biocathode operated at different set potentials. New Biotechnology, 2012, 30, 33-38.	2.4	18
102	Elucidating the key factors in semicontinuous anaerobic digestion of urban biowaste: The crucial role of sludge addition in process stability, microbial community enrichment and methane production. Renewable Energy, 2021, 179, 272-284.	4.3	18
103	Effect of feeding and sludge age on acclimated bacterial community and fate of slowly biodegradable substrate. Bioresource Technology, 2011, 102, 7794-7801.	4.8	17
104	GeneCARD-FISH: Detection of tceA and vcrA reductive dehalogenase genes in Dehalococcoides mccartyi by fluorescence in situ hybridization. Journal of Microbiological Methods, 2015, 110, 27-32.	0.7	17
105	Phylogenetic Structure and Metabolic Properties of Microbial Communities in Arsenic-Rich Waters of Geothermal Origin. Frontiers in Microbiology, 2017, 8, 2468.	1.5	17
106	Survey on the Occurrence of Filamentous Organisms in Municipal Wastewater Treatment Plants Related to Their Operating Conditions. Water Science and Technology, 1994, 29, 305-308.	1.2	17
107	Bio-chemical treatment of medium-age sanitary landfill leachates in a high synergy system. Process Biochemistry, 2011, 46, 2322-2329.	1.8	16
108	The Arsenite Oxidation Potential of Native Microbial Communities from Arsenic-Rich Freshwaters. Microbial Ecology, 2016, 72, 25-35.	1.4	16

#	Article	IF	CITATIONS
109	The biogeochemical vertical structure renders a meromictic volcanic lake a trap for geogenic CO2 (Lake Averno, Italy). PLoS ONE, 2018, 13, e0193914.	1.1	16
110	Technological transfer to demonstrative scale of sequencing batch biofilter granular reactor (SBBGR) technology for municipal and industrial wastewater treatment. Water Science and Technology, 2008, 58, 367-372.	1.2	15
111	Microbiome changes and oxidative capability of an anaerobic PCB dechlorinating enrichment culture after oxygen exposure. New Biotechnology, 2020, 56, 96-102.	2.4	15
112	Anaerobic transformation of tetrachloroethane, perchloroethylene, and their mixtures by mixed-cultures enriched from contaminated soils and sediments. Water Science and Technology, 2005, 52, 357-362.	1.2	14
113	On-site treatment of textile yarn dyeing effluents using an integrated biological–chemical oxidation process. International Journal of Environmental Science and Technology, 2014, 11, 623-632.	1.8	14
114	Effect of feeding regime and the sludge age on the fate of acetate and the microbial composition in sequencing batch reactor. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2012, 47, 192-203.	0.9	13
115	Fingerprinting Hydrocarbons in a Contaminated Soil from an Italian Natural Reserve and Assessment of the Performance of a Low-Impact Bioremediation Approach. Water, Air, and Soil Pollution, 2012, 223, 1773-1782.	1.1	12
116	Extent of intracellular storage in single and dual substrate systems under pulse feeding. Environmental Science and Pollution Research, 2013, 20, 1225-1238.	2.7	12
117	Predominance of Dehalococcoides in the presence of different sulfate concentrations. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	12
118	Adaptation of Microbial Communities to Environmental Arsenic and Selection of Arsenite-Oxidizing Bacteria From Contaminated Groundwaters. Frontiers in Microbiology, 2021, 12, 634025.	1.5	12
119	Microbiological characterisation of pure cultures and its relevance to modelling and control of bulking phenomena. Water Science and Technology, 1999, 39, 21-29.	1.2	12
120	Enhancing the biological reductive dechlorination of trichloroethylene with PHA from mixed microbial cultures (MMC). Journal of Environmental Chemical Engineering, 2022, 10, 107047.	3.3	12
121	Microbial Community Successional Changes in a Full-Scale Mesophilic Anaerobic Digester from the Start-Up to the Steady-State Conditions. Microorganisms, 2021, 9, 2581.	1.6	12
122	Passive electrobioremediation approaches for enhancing hydrocarbons biodegradation in contaminated soils. Science of the Total Environment, 2022, 845, 157325.	3.9	12
123	<i>In situ</i> identification of the synthrophic protein fermentative <i>Coprothermobacter</i> spp. involved in the thermophilic anaerobic digestion process. FEMS Microbiology Letters, 2014, 358, 55-63.	0.7	11
124	Performance and Characteristics of Aerobic Granular Sludge Degrading 2,4,6â€Trichlorophenol at Different Volumetric Organic Loading Rates. Clean - Soil, Air, Water, 2016, 44, 615-623.	0.7	11
125	Polyhydroxyalkanoates-accumulating bacteria isolated from activated sludge acclimatized to hardwood sulphite spent liquor. Annals of Microbiology, 2016, 66, 833-842.	1.1	10
126	Water and microbial monitoring technologies towards the near future space exploration. Water Research, 2020, 177, 115787.	5.3	10

#	Article	IF	CITATIONS
127	Enhanced Hydrocarbons Biodegradation at Deep-Sea Hydrostatic Pressure with Microbial Electrochemical Snorkels. Catalysts, 2021, 11, 263.	1.6	10
128	Simultaneous removal of hydrocarbons and sulfate from groundwater using a "bioelectric well― Electrochimica Acta, 2021, 388, 138636.	2.6	10
129	Coupled Adsorption and Biodegradation of Trichloroethylene on Biochar from Pine Wood Wastes: A Combined Approach for a Sustainable Bioremediation Strategy. Microorganisms, 2022, 10, 101.	1.6	10
130	Hydrocarbons removal from real marine sediments: Analysis of degradation pathways and microbial community development during bioslurry treatment. Science of the Total Environment, 2022, 838, 156458.	3.9	10
131	Advanced anaerobic processes to enhance waste activated sludge stabilization. Water Science and Technology, 2014, 69, 1728-1734.	1.2	9
132	In situ detection of alkB2 gene involved in Alcanivorax borkumensis SK2T hydrocarbon biodegradation. Marine Pollution Bulletin, 2016, 110, 378-382.	2.3	9
133	Impact of magnetite nanoparticles on the syntrophic dechlorination of 1,2-dichloroethane. Science of the Total Environment, 2018, 624, 17-23.	3.9	9
134	Effects of the Feeding Solution Composition on a Reductive/Oxidative Sequential Bioelectrochemical Process for Perchloroethylene Removal. Processes, 2021, 9, 405.	1.3	9
135	Description of filamentous bacteria present in industrial activated sludge WWTPs by conventional and molecular methods. Water Science and Technology, 2006, 54, 129-137.	1.2	8
136	Start-up of a granular sludge sequencing batch reactor for the treatment of 2,4-dichlorophenol-contaminated wastewater. Water Science and Technology, 2013, 68, 2151-2157.	1.2	8
137	Microbial community composition of water samples stored inside the International Space Station. Research in Microbiology, 2019, 170, 230-234.	1.0	8
138	Coupling of bioelectrochemical toluene oxidation and trichloroethene reductive dechlorination for single-stage treatment of groundwater containing multiple contaminants. Environmental Science and Ecotechnology, 2022, 11, 100171.	6.7	8
139	Effect of Coupling Zero-Valent Iron Side Filters on the Performance of Bioreactors Fed with a High Concentration of Perchloroethylene. Journal of Environmental Engineering, ASCE, 2016, 142, .	0.7	7
140	Highly complex substrates lead to dynamic bacterial community for polyhydroxyalkanoates production. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 1215-1224.	1.4	7
141	Water Quality and Total Microbial Load: A Double-Threshold Identification Procedure Intended for Space Applications. Frontiers in Microbiology, 2018, 9, 2903.	1.5	7
142	Correlations between maximum reductive dechlorination rates and specific biomass parameters in <i>Dehalococcoides mccartyi</i> consortia enriched on chloroethenes PCE, TCE and cis-1,2-DCE. FEMS Microbiology Ecology, 2021, 97, .	1.3	7
143	Impact of Organic Acids Supplementation to Hardwood Spent Sulfite Liquor as Substrate for the Selection of Polyhydroxyalkanoates-Producing Organisms. Fermentation, 2018, 4, 58.	1.4	6
144	Water and soil contaminated by arsenic: the use of microorganisms and plants in bioremediation. Environmental Science and Pollution Research, 2022, 29, 9462-9489.	2.7	6

#	Article	IF	CITATIONS
145	Two New Species of Filamentous Sulfur Bacteria of the Genus Thiothrix, Thiothrix winogradskyi sp. nov. and â€~Candidatus Thiothrix sulfatifontis' sp. nov Microorganisms, 2022, 10, 1300.	1.6	6
146	Monitoring, isolation and characterization of Microthrix parvicella strains from a Chinese wastewater treatment plant. Water Science and Technology, 2019, 79, 1406-1416.	1.2	5
147	Metagenomic Analysis Reveals Microbial Interactions at the Biocathode of a Bioelectrochemical System Capable of Simultaneous Trichloroethylene and Cr(VI) Reduction. Frontiers in Microbiology, 2021, 12, 747670.	1.5	5
148	CAtalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) for Complex Environmental Samples. Methods in Molecular Biology, 2021, 2246, 129-140.	0.4	5
149	Syntrophy drives the microbial electrochemical oxidation of toluene in a continuous-flow "bioelectric well― Journal of Environmental Chemical Engineering, 2022, 10, 107799.	3.3	5
150	Bacterial growth kinetics estimation by fluorescence in situ hybridization and spectrofluorometric quantification. Letters in Applied Microbiology, 2007, 44, 643-648.	1.0	4
151	Green bio-dispersant removal efficacy estimation for controlling biofilms in cooling towers. Annals of Microbiology, 2017, 67, 779-784.	1.1	4
152	Metatranscriptomic outlook on green and brown food webs in acid mine drainage. Environmental Microbiology Reports, 2021, 13, 606-615.	1.0	4
153	Biofilm diversity, structure and matrix seasonality in a full-scale cooling tower. Biofouling, 2018, 34, 1093-1109.	0.8	3
154	3-ROUTES PLATFORM FOR RECOVERY OF HIGH VALUE PRODUCTS, ENERGY AND BIO-FERTILIZER FROM URBAN BIOWASTE: THE REVENUE PROJECT. Detritus, 2021, , 24-30.	0.4	3
155	A Microcosm Treatability Study for Evaluating Wood Mulch-Based Amendments as Electron Donors for Trichloroethene (TCE) Reductive Dechlorination. Water (Switzerland), 2021, 13, 1949.	1.2	3
156	"Microthrix parvicella": a new approach for kinetic and physiological characterization. Water Science and Technology, 2002, 46, 65-72.	1.2	3
157	Assessing the potential for natural or enhanced in-situ bioremediation at a TCE-contaminated site by coupling process analysis and modeling. , 2005, , 265-277.		2
158	Study of performances, stability and microbial characterization of a Sequencing Batch Biofilter Granular Reactor working at low recirculation flow. Bioresource Technology, 2013, 129, 624-628.	4.8	2
159	Redox Interactions of Organohalide-Respiring Bacteria (OHRB) with Solid-State Electrodes: Principles and Perspectives of Microbial Electrochemical Remediation. , 2016, , 499-516.		2
160	Cascade systems to recover resources from sludge by the integration of pretreatments to fermentation-based anaerobic bioleaching process. Journal of Environmental Chemical Engineering, 2022, 10, 107711.	3.3	2
161	Activated Sludge Separation Problems: <i>Theory, Control Measures, Practical Experiences</i> - <i>Second Edition</i> . Water Intelligence Online, 2017, 16, 9781780408644.	0.3	1
162	Efficacy of methanogenic biomass acclimation in mesophilic anaerobic digestion of ultrasound pretreated sludge. Environmental Technology (United Kingdom), 2018, 39, 1250-1259.	1.2	1

#	Article	IF	CITATIONS
163	Biodegradation of Hydrocarbons in Marine Environment. Environmental Chemistry for A Sustainable World, 2021, , 195-228.	0.3	1
164	The microbiology of the activated sludge process. , 2017, , 21-51.		1
165	Bulking and foaming control methods. , 2017, , 99-138.		1
166	ENHANCED ANAEROBIC DIGESTION PERFORMANCES: EFFECT OF SLUDGE ULTRASOUND PRE-TREATMENT AND ROLE OF THE MICROBIAL POPULATION. Environmental Engineering and Management Journal, 2012, 11, 1803-1810.	0.2	1
167	Anaerobic transformation of tetrachloroethane, perchloroethylene, and their mixtures by mixed-cultures enriched from contaminated soils and sediments. Water Science and Technology, 2005, 52, 357-62.	1.2	1
168	Obituary Dr. Valter Tandoi. Annals of Microbiology, 2018, 68, 471-471.	1.1	0
169	Special issue in memory of Valter Tandoi (IRSA-CNR) – A life-long commitment to environmental biotechnology. New Biotechnology, 2021, 62, 57-59.	2.4	0
170	FISH in Suspension or in Adherent Cells. Methods in Molecular Biology, 2021, 2246, 51-67.	0.4	0
171	Snorkels enhance alkanes respiration at ambient and increased hydrostatic pressure (10ÂMPa) by either supporting the TCA cycle or limiting alternative routes for acetyl-CoA metabolism. Journal of Environmental Management, 2022, 316, 115244	3.8	Ο