
Richard E Ernst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2142764/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Existence of the Dharwar–Bastar–Singhbhum (DHABASI) megacraton since 3.35 Ga: constraints from the Precambrian large igneous province record. Geological Society Special Publication, 2022, 518, 173-196.	0.8	10
2	Large igneous provinces of the Amazonian Craton and their metallogenic potential in Proterozoic times. Geological Society Special Publication, 2022, 518, 493-529.	0.8	8
3	The mafic volcanic climax of the Paranáâ€Etendeka Large Igneous Province as the trigger of the Weissert Event. Terra Nova, 2022, 34, 28-36.	0.9	9
4	Oxygen isotopic alteration rate of continental crust recorded by detrital zircon and its implication for deep-time weathering. Earth and Planetary Science Letters, 2022, 578, 117292.	1.8	2
5	An overview of the plumbing systems of large igneous provinces and their significance. Geological Society Special Publication, 2022, 518, 1-16.	0.8	2
6	Comparisons of the Paleo-Mesoproterozoic large igneous provinces and black shales in the North China and North Australian cratons. Fundamental Research, 2022, 2, 84-100.	1.6	15
7	1.79–1.75ÂGa mafic magmatism of the Siberian craton and late Paleoproterozoic paleogeography. Precambrian Research, 2022, 370, 106557.	1.2	11
8	Ordovician-Silurian volcanism in northern Iran: Implications for a new Large Igneous Province (LIP) and a robust candidate for the Late Ordovician mass extinction. Gondwana Research, 2022, 107, 256-280.	3.0	14
9	Evidence for a Single Large Igneous Province at 2.11ÂGa across Supercraton Superia. Journal of Petrology, 2022, 63, .	1.1	2
10	Large igneous provinces track fluctuations in subaerial exposure of continents across the <scp>Archean–Proterozoic</scp> transition. Terra Nova, 2022, 34, 323-329.	0.9	11
11	Large-scale Volcanism and the Heat Death of Terrestrial Worlds. Planetary Science Journal, 2022, 3, 92.	1.5	9
12	Analysis of Venusian Wrinkle Ridge Morphometry Using Stereoâ€Derived Topography: A Case Study From Southern Eistla Regio. Journal of Geophysical Research E: Planets, 2022, 127, .	1,5	6
13	A new ca. 1.73ÂGa mafic magmatic event in the Indian Shield: Evidence from an in-situ SIMS U-Pb baddeleyite date and geochemistry of the mafic intrusions within the Gwalior basin, Bundelkhand craton. Precambrian Research, 2022, 377, 106696.	1.2	6
14	Mafic dikes of the Mariinsky Taiga Alkaline Province, Kuznetsk Alatau terrane, southwestern Siberia: Intraplate alkaline magmatism in the Central Asian Orogenic Belt. Lithos, 2022, 426-427, 106799.	0.6	2
15	Venus tesserae feature layered, folded, and eroded rocks. Geology, 2021, 49, 81-85.	2.0	23
16	Large Igneous Provinces. , 2021, , 60-68.		6
17	Identification of a new 485ÂMa post-orogenic mafic dyke swarm east of the Pan-African Saldania-Gariep Belt of South Africa. Precambrian Research, 2021, 354, 106043.	1.2	4
18	Plumbing systems of large igneous provinces (LIPs) on Earth and Venus: Investigating the role of giant circumferential and radiating dyke swarms, coronae and novae, and mid-crustal intrusive complexes. Gondwana Research, 2021, 100, 25-43.	3.0	33

#	Article	IF	CITATIONS
19	Discussion on â€~From Pan-African transpression to Cadomian transtension at the West African margin: new U–Pb zircon ages from the Eastern Saghro Inlier (Anti-Atlas, Morocco)' by Errami <i>et al</i> . 2020 (<i>SP</i> 503, 209–233). Journal of the Geological Society, 2021, 178, .	0.9	3
20	An appraisal of mineral systems associated with Precambrian Large Igneous Provinces of the Indian Shield. Ore Geology Reviews, 2021, 131, 104009.	1.1	20
21	U–Pb Dating of Apatite, Titanite and Zircon of the Kingash Mafic–Ultramafic Massif, Kan Terrane, Siberia: from Rodinia Break-up to the Reunion with the Siberian Craton. Journal of Petrology, 2021, 62,	1.1	4
22	The early Statherian (ca. 1800–1750ÂMa) Prutivka-Novogol large igneous province of Sarmatia: Geochronology and implication for the Nuna/Columbia supercontinent reconstruction. Precambrian Research, 2021, 358, 106185.	1.2	11
23	Reorienting the West African craton in Paleoproterozoic–Mesoproterozoic supercontinent Nuna. Geology, 2021, 49, 1171-1176.	2.0	10
24	LIP printing: Use of immobile element proxies to characterize Large Igneous Provinces in the geologic record. Lithos, 2021, 392-393, 106068.	0.6	64
25	A Ca. 2.25ÂGa mafic dyke swarm discovered in the Bastar craton, Central India: Implications for a widespread plume-generated large Igneous Province (LIP) in the Indian shield. Precambrian Research, 2021, 360, 106232.	1.2	18
26	The importance and difficulties of identifying mantle plumes in orogenic belts: An example based on the fragmented large igneous province (LIP) record in the Ural fold belt. Precambrian Research, 2021, 361, 106186.	1.2	9
27	Zircon megacrysts from Devonian kimberlites of the Azov Domain, Eastern part of the Ukrainian Shield: Implications for the origin and evolution of kimberlite melts. Lithos, 2021, 406-407, 106528.	0.6	4
28	Mapping mafic dyke swarms, structural features, and hydrothermal alteration zones in Atar, Ahmeyim and Chami areas (Reguibat Shield, Northern Mauritania) using high-resolution aeromagnetic and gamma-ray spectrometry data. Journal of African Earth Sciences, 2020, 163, 103749.	0.9	12
29	Age correlation of Large Igneous Provinces with Devonian biotic crises. Global and Planetary Change, 2020, 185, 103097.	1.6	34
30	Coupled supercontinent–mantle plume events evidenced by oceanic plume record. Geology, 2020, 48, 159-163.	2.0	42
31	Revised stratigraphic framework for the lower Anti-Atlas Supergroup based on U–Pb geochronology of magmatic and detrital zircons (Zenaga and Bou Azzer-El Graara inliers, Anti-Atlas Belt, Morocco). Journal of African Earth Sciences, 2020, 171, 103946.	0.9	23
32	Tesserae on Venus may preserve evidence of fluvial erosion. Nature Communications, 2020, 11, 5789.	5.8	24
33	Intermediate rocks in the Comei large igneous provinces produced by amphibole crystallization of tholeiitic basaltic magma. Lithos, 2020, 374-375, 105731.	0.6	3
34	PLATINUM-BEARING PLACERS: MINERAL ASSOCIATIONS AND THEIR 190Pt-4He AND Re-Os AGES, AND POTENTIAL LINKS WITH LARGE IGNEOUS PROVINCES IN THE SIBERIAN CRATON. Economic Geology, 2020, 115, 1835-1853.	1.8	3
35	Late Ordovician Mafic Magmatic Event, Southeast Siberia: Tectonic Implications, LIP Interpretation, and Potential Link with a Mass Extinction. Minerals (Basel, Switzerland), 2020, 10, 1108.	0.8	8
36	The Paleozoic-Aged University Foidolite-Gabbro Pluton of the Northeastern Part of the Kuznetsk Alatau Ridge, Siberia: Geochemical Characterization, Geochronology, Petrography and Geophysical Indication of Potential High-Grade Nepheline Ore. Minerals (Basel, Switzerland), 2020, 10, 1128.	0.8	6

#	Article	IF	CITATIONS
37	Toxic mercury pulses into late Permian terrestrial and marine environments. Geology, 2020, 48, 830-833.	2.0	60
38	Archean block rotation in Western Karelia: Resolving dyke swarm patterns in metacraton Karelia-Kola for a refined paleogeographic reconstruction of supercraton Superia. Lithos, 2020, 368-369, 105553.	0.6	15
39	Late Paleoproterozoic to Early Mesoproterozoic Mafic Magmatism in the SW Yangtze Block: Mantle Plumes Associated With Nuna Breakup?. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019260.	1.4	17
40	Geochronology, whole-rock geochemistry and Sr-Nd isotopes of the Bhanupratappur mafic dyke swarm: Evidence for a common Paleoproterozoic LIP event at 2.37–2.36ÀGa in the Bastar and Dharwar cratons. Precambrian Research, 2020, 347, 105853.	1.2	19
41	Spatial and temporal distribution patterns of Precambrian mafic dyke swarms in northern Mauritania (West African craton): analysis and results from remote-sensing interpretation, geographical information systems (GIS), Google Earth â,,¢ images, and regional geology. Arabian Journal of Geosciences. 2020. 13. 1.	0.6	0
42	A preliminary reassessment of the Siberian cratonic basement with new U-Pb-Hf detrital zircon data. Precambrian Research, 2020, 340, 105645.	1.2	23
43	Roberts Lake Syncline mafic lavas (NE Superior craton): A proposed extension of the Cape Smith belt. Lithos, 2020, 366-367, 105545.	0.6	3
44	Influence of Large Igneous Provinces. , 2020, , 345-356.		4
45	The Central lapetus magmatic province: An updated review and link with the ca. 580 Ma Gaskiers glaciation. , 2020, , 35-66.		17
46	Semi-automatic extraction and mapping of dyke swarms based on multi-resolution remote sensing images: Applied to the dykes in the Kuluketage region in the northeastern Tarim Block. Precambrian Research, 2019, 329, 262-272.	1.2	16
47	Precambrian mafic dyke swarms in the Singhbhum craton (eastern India) and their links with dyke swarms of the eastern Dharwar craton (southern India). Precambrian Research, 2019, 329, 5-17.	1.2	52
48	Linking paleoâ€surface characteristics and deep crustal processes caused by mantle plumes. Acta Geologica Sinica, 2019, 93, 159-160.	0.8	0
49	LIPs and implications for the structure and evolution of continental crust. Acta Geologica Sinica, 2019, 93, 124-126.	0.8	0
50	Geology of the Alpha Regio (V-32) Quadrangle, Venus. Journal of Maps, 2019, 15, 474-486.	1.0	2
51	Geochemical characterization of a reconstructed 1110†Ma Large Igneous Province. Precambrian Research, 2019, 332, 105382.	1.2	37
52	A new plumbing system framework for mantle plume-related continental Large Igneous Provinces and their mafic-ultramafic intrusions. Journal of Volcanology and Geothermal Research, 2019, 384, 75-84.	0.8	94
53	A New Ectasian Event of Basitic Magmatism in the Southern Siberian Craton. Doklady Earth Sciences, 2019, 486, 507-511.	0.2	6
54	A fragment of the ca. 890â€ ⁻ Ma large igneous province (LIP) in southern Tarim, NW China: A missing link between São Francisco, Congo and North China cratons. Precambrian Research, 2019, 333, 105428.	1.2	19

#	Article	IF	CITATIONS
55	Nature of charnockite and Closepet granite in the Dharwar Craton: Implications for the architecture of the Archean crust. Precambrian Research, 2019, 334, 105478.	1.2	19
56	Revisiting the Precambrian evolution of the Southwestern Tarim terrane: Implications for its role in Precambrian supercontinents. Precambrian Research, 2019, 324, 18-31.	1.2	40
57	The Overmaraat-Gol Alkaline Pluton in Northern Mongolia: U–Pb Age and Preliminary Implications for Magma Sources and Tectonic Setting. Minerals (Basel, Switzerland), 2019, 9, 170.	0.8	7
58	Petrography, mineralogy and SIMS U-Pb geochronology of 1.9–1.8ÂGa carbonatites and associated alkaline rocks of the Central-Aldan magnesiocarbonatite province (South Yakutia, Russia). Mineralogy and Petrology, 2019, 113, 329-352.	0.4	8
59	Geochemical, isotopic, and U–Pb zircon study of the central and southern portions of the 780 Ma Gunbarrel Large Igneous Province in western Laurentia. Canadian Journal of Earth Sciences, 2019, 56, 738-755.	0.6	13
60	The 920–900â€ ⁻ Ma Bahia-Gangila LIP of the São Francisco and Congo cratons and link with Dashigou-Chulan LIP of North China craton: New insights from U-Pb geochronology and geochemistry. Precambrian Research, 2019, 329, 124-137.	1.2	53
61	Petrogenesis of Paleo-Mesoproterozoic mafic rocks in the southwestern Yangtze Block of South China: Implications for tectonic evolution and paleogeographic reconstruction. Precambrian Research, 2019, 322, 66-84.	1.2	49
62	Emplacement ages of Paleoproterozoic mafic dyke swarms in eastern Dharwar craton, India: Implications for paleoreconstructions and support for a â^1⁄430° change in dyke trends from south to north. Precambrian Research, 2019, 329, 26-43.	1.2	74
63	Precambrian mafic dyke swarms in the Singhbhum craton (eastern India) and their links with dyke swarms of the eastern Dharwar craton (southern India) – Reply. Precambrian Research, 2019, 329, 23-25.	1.2	2
64	Phosphorus and Potassium Metasomatic Enrichment in the Mantle Source of the <i>c</i> . 1450–1425 Ma Michael–Shabogamo Gabbro of Eastern Laurentia. Journal of Petrology, 2019, 60, 57-83.	1.1	15
65	Neoarchean-Mesoproterozoic Mafic Dyke Swarms of the Indian Shield Mapped Using Google Earthâ,,¢ Images and ArcGISâ,,¢, and Links with Large Igneous Provinces. Springer Geology, 2019, , 335-390.	0.2	20
66	Giant Circumferential Dyke Swarms: Catalogue and Characteristics. Springer Geology, 2019, , 1-44.	0.2	24
67	The Mesozoic Equatorial Atlantic Magmatic Province (EQUAMP). Springer Geology, 2019, , 87-110.	0.2	7
68	Magma Transport Pathways in Large Igneous Provinces: Lessons from Combining Field Observations and Seismic Reflection Data. Springer Geology, 2019, , 45-85.	0.2	12
69	New U–Pb Baddeleyite Ages of Mafic Dyke Swarms of the West African and Amazonian Cratons: Implication for Their Configuration in Supercontinents Through Time. Springer Geology, 2019, , 263-314.	0.2	18
70	An Inventory of Geoheritage Sites in the Draa Valley (Morocco): a Contribution to Promotion of Geotourism and Sustainable Development. Geoheritage, 2019, 11, 241-255.	1.5	29
71	U-Pb baddeleyite ages of key dyke swarms in the Amazonian Craton (Carajás/Rio Maria and Rio Apa) Tj ETQq1 1 (329, 138-155.).784314 1.2	rgBT /Ove 41
72	Enlargement of the area of the Timpton Large Igneous Province (ca. 1.75 ga) of the Siberian craton. Geodinamika I Tektonofizika, 2019, 10, 829-839.	0.3	5

#	Article	IF	CITATIONS
73	A giant circumferential dyke swarm associated with the High Arctic Large Igneous Province (HALIP). Gondwana Research, 2018, 58, 39-57.	3.0	58
74	Enhanced nondestructive characterization of ordinary chondrites using complex magnetic susceptibility measurements. Meteoritics and Planetary Science, 2018, 53, 433-447.	0.7	1
75	U-Pb geochronology of the plumbing system associated with the Late Cretaceous Strand Fiord Formation, Axel Heiberg Island, Canada: part of the 130-90 Ma High Arctic large igneous province. Journal of Geodynamics, 2018, 118, 106-117.	0.7	38
76	A temporal and causal link between ca. 1380 Ma large igneous provinces and black shales: Implications for the Mesoproterozoic time scale and paleoenvironment. Geology, 2018, 46, 963-966.	2.0	41
77	Geochemistry and Petrogenesis of Mesoproterozoic Dykes of the Irkutsk Promontory, Southern Part of the Siberian Craton. Minerals (Basel, Switzerland), 2018, 8, 545.	0.8	13
78	U-Pb Geochronology and Geochemistry of the Povungnituk Group of the Cape Smith Belt: Part of a Craton-Scale Circa 2.0†Ga Minto-Povungnituk Large Igneous Province, Northern Superior Craton. Lithos, 2018, 320-321, 315-331.	0.6	15
79	When do mantle plumes destroy diamonds?. Earth and Planetary Science Letters, 2018, 502, 244-252.	1.8	25
80	Evidence for triple-junction rifting focussed on local magmatic centres along Parga Chasma, Venus. Icarus, 2018, 306, 122-138.	1.1	10
81	Geochemistry and U-Pb geochronology of 1590 and 1550â€ [−] Ma mafic dyke swarms of western Laurentia: Mantle plume magmatism shared with Australia. Lithos, 2018, 314-315, 216-235.	0.6	25
82	Platinum-bearing placers of Siberian platform: mineral associations and their age characteristics as indicators of large igneous provinces manifested in old platform. Arctic and Subarctic Natural Resources, 2018, 25, 36-52.	0.5	1
83	The origin of the Palaeoproterozoic AMCG complexes in the Ukrainian shield: New U-Pb ages and Hf isotopes in zircon. Precambrian Research, 2017, 292, 216-239.	1.2	57
84	A mantle plume origin for the Palaeoproterozoic Circum-Superior Large Igneous Province. Precambrian Research, 2017, 294, 189-213.	1.2	42
85	The 1.33–1.30 Ga Yanliao large igneous province in the North China Craton: Implications for reconstruction of the Nuna (Columbia) supercontinent, and specifically with the North Australian Craton. Earth and Planetary Science Letters, 2017, 465, 112-125.	1.8	125
86	How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 478, 30-52.	1.0	301
87	A c. 1710 Ma mafic sill emplaced into a quartzite and calcareous series from Ighrem, Anti-Atlas – Morocco: Evidence that the Taghdout passive margin sedimentary group is nearly 1 Ga older than previously thought. Journal of African Earth Sciences, 2017, 127, 62-76.	0.9	49
88	Gravity and magnetic modelling of layered mafic–ultramafic intrusions in large igneous province plume centre regions: case studies from the 1.27 Ga Mackenzie, 1.38 Ga Kunene–Kibaran, 0.06 Ga Deccan, and 0.13–0.08 Ga High Arctic events. Canadian Journal of Earth Sciences, 2017, 54, 290-310.	0.6	28
89	Large Igneous Provinces and Their Mafic-Ultramafic Intrusions. IOP Conference Series: Earth and Environmental Science, 2017, 110, 012005.	0.2	3
90	Neoarchaeanâ€Palaeoproterozoic Mafic Dyke Swarms from the Singhbhum Granite Complex, Singhbhum Craton, Eastern India: Implications for Identification of Large Igneous Provinces and Their Possible Continuation on Other Formerly Adjacent Crustal Blocks. Acta Geologica Sinica, 2016, 90, 17-18.	0.8	9

#	Article	IF	CITATIONS
91	Morocco, North Africa: a Dyke Swarm Bonanza. Acta Geologica Sinica, 2016, 90, 15-15.	0.8	1
92	Mapping the Dyke Swarms Emplaced within the Different Archean Cratons of the Indian Shield Using Googleâ"¢ Earth Images and ArcGISâ"¢ Techniques. Acta Geologica Sinica, 2016, 90, 64-65.	0.8	3
93	Large Igneous Provinces, Their Giant Mafic Dyke Swarms, and Links to Metallogeny. Acta Geologica Sinica, 2016, 90, 193-194.	0.8	2
94	Guidelines for Preparing Comprehensive Regional Mafic Dyke Swarm Maps. Acta Geologica Sinica, 2016, 90, 20-21.	0.8	2
95	Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic. Nature Geoscience, 2016, 9, 464-469.	5.4	236
96	An 850–820Ma LIP dismembered during breakup of the Rodinia supercontinent and destroyed by Early Paleozoic continental subduction in the northern Tibetan Plateau, NW China. Precambrian Research, 2016, 282, 52-73.	1.2	57
97	Dyke swarms: keys to paleogeographic reconstructions. Science Bulletin, 2016, 61, 1669-1671.	4.3	4
98	Mapping the Dyke Swarms of the Eglab‥etti Region, Southwestern Algeria. Acta Geologica Sinica, 2016, 90, 51-51.	0.8	2
99	Mapping the Dyke Swarms of the Eastern Desert, Egypt. Acta Geologica Sinica, 2016, 90, 28-28.	0.8	1
100	Proterozoic Dyke Swarms of the Siberian Craton and Their Geodynamic Implications. Acta Geologica Sinica, 2016, 90, 6-7.	0.8	4
101	Refining the Stratigraphy of the Taghdout Group by Using the Uâ€Pb Geochronology of the Taghdout Sill (Zenaga inlier, Antiâ€Atlas, Morocco). Acta Geologica Sinica, 2016, 90, 1-1.	0.8	5
102	Distribution and Uâ€₽b Ages of Newly Recognized Regionalâ€5cale Dyke Swarms of the Leo Man Craton. Acta Geologica Sinica, 2016, 90, 29-29.	0.8	2
103	Age and Geochemical Characteristics of Major Mafic Dyke Swarms in the Southern Part of the Siberian Craton. Acta Geologica Sinica, 2016, 90, 125-126.	0.8	0
104	Map of Mafic Dyke Swarms and Related Units of Russia and Adjacent Regions. Acta Geologica Sinica, 2016, 90, 22-23.	0.8	2
105	Radiating Dyke Swarms in the BAT Region on Venus: A Study From the Helen Planitia Quadrangle. Acta Geologica Sinica, 2016, 90, 185-185.	0.8	0
106	Pit Chains Belonging to Radiating Grabenâ€Fissure Systems on Venus: Model for Formation during Lateral Dyke Injection. Acta Geologica Sinica, 2016, 90, 143-144.	0.8	4
107	Comparison of Venusian Coronae with Giant Circumferential Dyke Swarms on Earth. Acta Geologica Sinica, 2016, 90, 183-184.	0.8	1
108	Giant Circumferential Dyke Swarms on Earth: Possible Analogues of Coronae on Venus and Similar Features on Mars. Acta Geologica Sinica, 2016, 90, 186-187.	0.8	4

#	Article	IF	CITATIONS
109	The Mesoproterozoic mantle plume beneath the northern part of the Siberian craton. Russian Geology and Geophysics, 2016, 57, 672-686.	0.3	13
110	Tectonic activity of the early Earth (4.56–3.4(2.7?) Ga). Russian Geology and Geophysics, 2016, 57, 639-652.	0.3	5
111	The 1501 Ma Kuonamka Large Igneous Province of northern Siberia: U–Pb geochronology, geochemistry, and links with coeval magmatism on other crustal blocks. Russian Geology and Geophysics, 2016, 57, 653-671.	0.3	41
112	U-Pb baddeleyite dating of the Proterozoic ParÃi de Minas dyke swarm in the São Francisco craton (Brazil) – implications for tectonic correlation with the Siberian, Congo and North China cratons. Gff, 2016, 138, 219-240.	0.4	53
113	New U–Pb ages for mafic dykes in the Northwestern region of the Ukrainian shield: coeval tholeiitic and jotunitic magmatism. Gff, 2016, 138, 79-85.	0.4	17
114	New U–Pb baddeleyite age, and AMS and paleomagnetic data for dolerites in the Lake Onega region belonging to the 1.98–1.95ÂGa regional Pechenga–Onega Large Igneous Province. Gff, 2016, 138, 54-78.	0.4	19
115	New advances in using large igneous provinces (LIPs) to reconstruct ancient supercontinents. Gff, 2016, 138, 1-5.	0.4	7
116	The ca. 1.8ÂGa mantle plume related magmatism of the central part of the Ukrainian shield. Gff, 2016, 138, 86-101.	0.4	23
117	A Devonian >2000-km-long dolerite dyke swarm-belt and associated basalts along the Urals-Novozemelian fold-belt: part of an East-European (Baltica) LIP tracing the Tuzo Superswell. Gff, 2016, 138, 6-16.	0.4	25
118	Crustal structure and tectonic model of the Arctic region. Earth-Science Reviews, 2016, 154, 29-71.	4.0	97
119	Widespread ca. 1.4ÂGa intraplate magmatism and tectonics in a growing Amazonia. Gff, 2016, 138, 241-254.	0.4	12
120	Return to Rodinia? Moderate to high palaeolatitude of the São Francisco/Congo craton at 920 Ma. Geological Society Special Publication, 2016, 424, 167-190.	0.8	43
121	Age and Sulfur Isotope Composition of the Prutivka Intrusion (the 1.78 Ga Prutivka-Novogol Large) Tj ETQq1 1 C	.784314 ı 0.0	rgBT /Overloci
122	The High Arctic LIP in Canada: Trace element and Sm–Nd isotopic evidence for the role of mantle heterogeneity and crustal assimilation. Norwegian Journal of Geology, 2016, , .	0.5	5
123	Giant radiating mafic dyke swarm of the Emeishan Large Igneous Province: Identifying the mantle plume centre. Terra Nova, 2015, 27, 247-257.	0.9	50
124	An updated map of West African mafic dykes. Journal of African Earth Sciences, 2015, 112, 440-450.	0.9	46
125	Rift magmatism on the Eurasia basin margin: U–Pb baddeleyite ages of alkaline dyke swarms in North Greenland. Journal of the Geological Society, 2015, 172, 721-726.	0.9	21
126	The Early Proterozoic Matachewan Large Igneous Province: Geochemistry, Petrogenesis, and Implications for Earth Evolution. Journal of Petrology, 2015, 56, 1459-1494.	1.1	31

#	Article	IF	CITATIONS
127	Paleomagnetism and U–Pb age of the 2.4Ga Erayinia mafic dykes in the south-western Yilgarn, Western Australia: Paleogeographic and geodynamic implications. Precambrian Research, 2015, 259, 222-231.	1.2	42
128	Precise ID-TIMS U–Pb baddeleyite ages (1110–1112Ma) for the Rincón del Tigre–Huanchaca large igneous province (LIP) of the Amazonian Craton: Implications for the Rodinia supercontinent. Precambrian Research, 2015, 265, 273-285.	5 1.2	41
129	Zircon U–Pb dating, geochemistry and Sr–Nd–Pb–Hf isotopes of the Wajilitag alkali mafic dikes, and associated diorite and syenitic rocks: Implications for magmatic evolution of the Tarim large igneous province. Lithos, 2015, 212-215, 428-442.	0.6	32
130	Circumferential Lineament System (Venus). , 2015, , 302-307.		0
131	Linear Lineament System (Venus). , 2015, , 1232-1235.		0
132	Gridded Plains (Venus). , 2015, , 882-884.		0
133	Diapir (Mantle). , 2015, , 581-585.		0
134	Diapir (Mantle). , 2014, , 1-6.		0
135	Gridded Plains (Venus). , 2014, , 1-4.		0
136	Geochemistry of the 130 to 80 Ma Canadian High Arctic Large Igneous Province (HALIP) Event and Implications for Ni-Cu-PGE Prospectivity. Economic Geology, 2014, 109, 281-307.	1.8	63
137	Intraplate geodynamics and magmatism in the evolution of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 2014, 93, 158-179.	1.0	70
138	U-Pb geochronology of 1.1 Ga diabase in the southwestern United States: Testing models for the origin of a post-Grenville large igneous province. Lithosphere, 2014, 6, 135-156.	0.6	63
139	The geochemistry and petrogenesis of the Paleoproterozoic du Chef dyke swarm, Québec, Canada. Precambrian Research, 2014, 250, 151-166.	1.2	12
140	Dykes of the 1.11Ga Umkondo LIP, Southern Africa: Clues to a complex plumbing system. Precambrian Research, 2014, 249, 129-143.	1.2	60
141	Linear Lineament System (Venus). , 2014, , 1-5.		0
142	The first evidence of Paleoproterozoic late-collision basite magmatism in the near-Sayan salient of the Siberian craton basement. Doklady Earth Sciences, 2013, 450, 583-586.	0.2	11
143	The 1750Ma Magmatic Event of the West African Craton (Anti-Atlas, Morocco). Precambrian Research, 2013, 236, 106-123.	1.2	102
144	Mesoproterozoic intraplate magmatic †barcode' record of the Angola portion of the Congo Craton: Newly dated magmatic events at 1505 and 1110Ma and implications for Nuna (Columbia) supercontinent reconstructions. Precambrian Research, 2013, 230, 103-118.	1.2	122

#	Article	IF	CITATIONS
145	U–Pb (ID-TIMS) baddeleyite ages and paleomagnetism of 1.79 and 1.59Ga tholeiitic dyke swarms, and position of the Rio de la Plata Craton within the Columbia supercontinent. Lithos, 2013, 174, 157-174.	0.6	79
146	The northern and southern sections of the western ca. 1880Ma Circum-Superior Large Igneous Province, North America: The Pickle Crow dyke connection?. Lithos, 2013, 174, 217-235.	0.6	29
147	Geochemical assessment of the metallogenic potential of Proterozoic LIPs of Canada. Lithos, 2013, 174, 291-307.	0.6	50
148	The ca. 1380Ma Mashak igneous event of the Southern Urals. Lithos, 2013, 174, 109-124.	0.6	72
149	First precise U–Pb baddeleyite ages of 1500Ma mafic dykes from the São Francisco Craton, Brazil, and tectonic implications. Lithos, 2013, 174, 144-156.	0.6	80
150	Hierarchical clustering of pit crater chains on Venus. Canadian Journal of Earth Sciences, 2013, 50, 109-126.	0.6	16
151	Precise U–Pb ages and geochemistry of Palaeoproterozoic mafic dykes from southern West Greenland: Linking the North Atlantic and the Dharwar cratons. Lithos, 2013, 174, 255-270.	0.6	58
152	Palaeomagnetic, geochronological and geochemical study of Mesoproterozoic Lakhna Dykes in the Bastar Craton, India: Implications for the Mesoproterozoic supercontinent. Lithos, 2013, 174, 125-143.	0.6	87
153	SHRIMP zircon U–Pb geochronology, geochemistry and Sr–Nd–Hf isotopic compositions of a mafic dyke swarm in the Qiangtang terrane, northern Tibet and geodynamic implications. Lithos, 2013, 174, 28-43.	0.6	121
154	The geochemistry and petrogenesis of the Blue Draw Metagabbro. Lithos, 2013, 174, 271-290.	0.6	3
155	Periodicities in the emplacement of large igneous provinces through the Phanerozoic: Relations to ocean chemistry and marine biodiversity evolution. Geoscience Frontiers, 2013, 4, 263-276.	4.3	70
156	The Hlagothi Complex: The identification of fragments from a Mesoarchaean large igneous province on the Kaapvaal Craton. Lithos, 2013, 174, 333-348.	0.6	30
157	Palaeoproterozoic porphyry Cu–Au, intrusion-hosted Au and ultramafic Cu–Ni deposits in the Fennoscandian Shield: Temporal constraints using U–Pb geochronology. Lithos, 2013, 174, 236-254.	0.6	11
158	Reply to Comment on "U–Pb baddeleyite ages and geochemistry of dolerite dykes in the Bas-Drâa inlier of the Anti-Atlas of Morocco: Newly identified 1380Ma event in the West African Craton―by André Michard and Dominique Gasquet. Lithos, 2013, 174, 101-108.	0.6	60
159	Early Paleozoic mafic magmatic events on the eastern margin of the Siberian Craton. Lithos, 2013, 174, 44-56.	0.6	35
160	U–Pb ages and geochemistry of mafic dyke swarms from the Uauá Block, São Francisco Craton, Brazil: LIPs remnants relevant for Late Archaean break-up of a supercraton. Lithos, 2013, 174, 308-322.	0.6	37
161	U–Pb baddeleyite and zircon ages of 2040Ma, 1650Ma and 885Ma on dolerites in the West African Craton (Anti-Atlas inliers): Possible links to break-up of Precambrian supercontinents. Lithos, 2013, 174, 71-84.	0.6	78
162	U–Pb baddeleyite ages and geochemistry of dolerite dykes in the Bas Drâa Inlier of the Anti-Atlas of Morocco: Newly identified 1380 Ma event in the West African Craton. Lithos, 2013, 174, 85-98.	0.6	82

#	Article	IF	CITATIONS
163	The Ahmeyim Great Dyke of Mauritania: A newly dated Archaean intrusion. Lithos, 2013, 174, 323-332.	0.6	16
164	Trading partners: Tectonic ancestry of southern Africa and western Australia, in Archean supercratons Vaalbara and Zimgarn. Precambrian Research, 2013, 224, 11-22.	1.2	87
165	Physical characterization of a suite of Buzzard Coulee H4 chondrite fragments. Meteoritics and Planetary Science, 2013, 48, 1060-1073.	0.7	7
166	Radiating rifts and dyke swarms of the middle Paleozoic Yakutsk plume of eastern Siberian craton. Journal of Asian Earth Sciences, 2012, 45, 1-16.	1.0	57
167	U–Pb baddeleyite ages, distribution and geochemistry of 925Ma mafic dykes and 900Ma sills in the North China craton: Evidence for a Neoproterozoic mantle plume. Lithos, 2011, 127, 210-221.	0.6	212
168	Radiating graben–fissure systems in the Ulfrun Regio area, Venus. Icarus, 2011, 215, 279-291.	1.1	26
169	Large igneous provinces (LIPs) and carbonatites. Mineralogy and Petrology, 2010, 98, 55-76.	0.4	251
170	Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the PresentThis article is one of a selection of papers published in this Special Issue on the the theme <i>Lithoprobeâ€"parameters, processes, and the evolution of a continent</i> .Lithoprobe Contribution 1482. Geological Survey of Canada Contribution 20100072 Canadian Journal of Earth Sciences, 2010, 47, 695-739.	0.6	337
171	Towards a complete magmatic barcode for the Zimbabwe craton: Baddeleyite U–Pb dating of regional dolerite dyke swarms and sill complexes. Precambrian Research, 2010, 183, 388-398.	1.2	148
172	Petrological discrimination among Precambrian dyke swarms: Eastern Kaapvaal craton (South Africa). Precambrian Research, 2010, 183, 501-522.	1.2	46
173	Proterozoic mafic magmatism in Siberian craton: An overview and implications for paleocontinental reconstruction. Precambrian Research, 2010, 183, 660-668.	1.2	127
174	Paleomagnetic study of NeoArchean–Paleoproterozoic dykes in the Kaapvaal Craton. Precambrian Research, 2010, 183, 523-552.	1.2	48
175	U–Pb baddeleyite ages linking major Archean dyke swarms to volcanic-rift forming events in the Kaapvaal craton (South Africa), and a precise age for the Bushveld Complex. Precambrian Research, 2010, 183, 490-500.	1.2	102
176	Precise U–Pb baddeleyite ages of mafic dykes and intrusions in southern West Greenland and implications for a possible reconstruction with the Superior craton. Precambrian Research, 2010, 183, 399-415.	1.2	43
177	Intraplate magmatism in Central Asia and China and associated metallogeny. Ore Geology Reviews, 2009, 35, 114-136.	1.1	214
178	How not to build a supercontinent: A reply to J.D.A. Piper. Precambrian Research, 2009, 174, 208-214.	1.2	16
179	Revised definition of Large Igneous Provinces (LIPs). Earth-Science Reviews, 2008, 86, 175-202.	4.0	685
180	A 1.78ÂGa large igneous province in the North China craton: The Xiong'er Volcanic Province and the North China dyke swarm. Lithos, 2008, 101, 260-280.	0.6	346

#	Article	IF	CITATIONS
181	Neoproterozoic rift and within-plate magmatism in the Yenisei Ridge: implications for the breakup of Rodinia. Russian Geology and Geophysics, 2008, 49, 503-519.	0.3	49
182	Global record of 1600–700Ma Large Igneous Provinces (LIPs): Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambrian Research, 2008, 160, 159-178.	1.2	425
183	Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 2008, 160, 179-210.	1.2	2,747
184	The Paleoproterozoic Marathon Large Igneous Province: New evidence for a 2.1Ga long-lived mantle plume event along the southern margin of the North American Superior Province. Precambrian Research, 2008, 162, 327-353.	1.2	74
185	Paleomagnetism, U–Pb geochronology, and geochemistry of Lac Esprit and other dyke swarms, James Bay area, Quebec, and implications for Paleoproterozoic deformation of the Superior Province. Canadian Journal of Earth Sciences, 2007, 44, 643-664.	0.6	77
186	Magnetic fabric studies of the Nipissing sill province and Senneterre dykes, Canadian Shield, and implications for emplacement. Canadian Journal of Earth Sciences, 2007, 44, 507-528.	0.6	14
187	Plumes and Plume Clusters on Earth and Venus: Evidence from Large Igneous Provinces (LIPs). , 2007, , 537-562.		6
188	Mafic-Ultramafic Large Igneous Provinces (LIPs): Importance of the Pre-Mesozoic record. Episodes, 2007, 30, 108-114.	0.8	57
189	Stony meteorite characterization by nonâ€destructive measurement of magnetic properties. Meteoritics and Planetary Science, 2006, 41, 355-373.	0.7	24
190	Absolute paleointensity at 1.27 Ga from the Mackenzie dyke swarm (Canada). Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	1.0	17
191	Measuring the bulk density of meteorites nondestructively using three-dimensional laser imaging. Journal of Geophysical Research, 2006, 111, .	3.3	14
192	The Central Scandinavian Dolerite Group—Protracted hotspot activity or back-arc magmatism?. Precambrian Research, 2006, 150, 136-152.	1.2	97
193	Frontiers in large igneous province research. Lithos, 2005, 79, 271-297.	0.6	311
194	Corrigendum to "Lessons from Venus for understanding mantle plumes on Earth― Physics of the Earth and Planetary Interiors, 2005, 149, 371.	0.7	0
195	Time‣eries Analysis of Large Igneous Provinces: 3500 Ma to Present. Journal of Geology, 2004, 112, 1-22.	0.7	97
196	Lessons from Venus for understanding mantle plumes on Earth. Physics of the Earth and Planetary Interiors, 2004, 146, 195-229.	0.7	50
197	RECOGNIZINGMANTLEPLUMES IN THEGEOLOGICALRECORD. Annual Review of Earth and Planetary Sciences, 2003, 31, 469-523.	4.6	294
198	Graben–fissure systems in Guinevere Planitia and Beta Regio (264°–312°E, 24°–60°N), Venus, and implications for regional stratigraphy and mantle plumes. Icarus, 2003, 164, 282-316.	1.1	63

#	Article	IF	CITATIONS
199	Low paleointensities recorded in 1 to 2.4 Ga Proterozoic dykes, Superior Province, Canada. Earth and Planetary Science Letters, 2003, 213, 79-95.	1.8	53
200	Magma flow pattern in the North Mountain basalts of the 200 Ma CAMP event: Evidence from the magnetic fabric. Geophysical Monograph Series, 2003, , 227-239.	0.1	0
201	Maximum size and distribution in time and space of mantle plumes: evidence from large igneous provinces. Journal of Geodynamics, 2002, 34, 309-342.	0.7	128
202	Rodinia: the evidence from integrated palaeomagnetism and U–Pb geochronology. Precambrian Research, 2001, 110, 9-32.	1.2	106
203	Large mafic magmatic events through time and links to mantle-plume heads. , 2001, , .		128
204	The use of mafic dike swarms in identifying and locating mantle plumes. , 2001, , .		61
205	The sedimentary record of mantle-plume uplift. , 2001, , .		23
206	Contractional effects of mantle plumes on Earth, Mars, and Venus. , 2001, , .		23
207	Giant Dike Swarms: Earth, Venus, and Mars. Annual Review of Earth and Planetary Sciences, 2001, 29, 489-534.	4.6	280
208	Integrated Paleomagnetism and Uâ€Pb Geochronology of Mafic Dikes of the Eastern Anabar Shield Region, Siberia: Implications for Mesoproterozoic Paleolatitude of Siberia and Comparison with Laurentia. Journal of Geology, 2000, 108, 381-401.	0.7	134
209	An Approach to the Reconstruction of Deformed Continental Crust Using Gridded Geophysical Data. Exploration Geophysics, 1999, 30, 101-104.	0.5	2
210	Longitudinal Petrochemical Variation in the Mackenzie Dyke Swarm, Northwestern Canadian Shield. Journal of Petrology, 1996, 37, 317-359.	1.1	164
211	Giant radiating dyke swarms on Earth and Venus. Earth-Science Reviews, 1995, 39, 1-58.	4.0	346
212	Onaping fault system: age constraints on deformation of the Kapuskasing structural zone and units underlying the Sudbury Structure. Canadian Journal of Earth Sciences, 1994, 31, 1197-1205.	0.6	25
213	Paleomagnetism of the Abitibi dyke swarm, southern Superior Province, and implications for the Logan Loop. Canadian Journal of Earth Sciences, 1993, 30, 1886-1897.	0.6	70
214	Crustal-scale auriferous shear zones in the central Superior province, Canada. Geology, 1993, 21, 399.	2.0	20
215	Petrology of the Great Abitibi Dyke, Superior Province, Canada. Journal of Petrology, 1992, 33, 423-469.	1.1	37
216	Archean mafic dyke swarms near the Cameron River and Beaulieu River volcanic belts and their implications for tectonic modelling of the Slave Province, Northwest Territories. Canadian Journal of Earth Sciences, 1992, 29, 2226-2248.	0.6	17

#	Article	IF	CITATIONS
217	Evidence from magnetic fabric for the flow pattern of magma in the Mackenzie giant radiating dyke swarm. Nature, 1992, 356, 511-513.	13.7	326
218	Evidence from aeromagnetics on the configuration of Matachewan dykes and the tectonic evolution of the Kapuskasing Structural Zone, Ontario, Canada. Canadian Journal of Earth Sciences, 1991, 28, 1797-1811.	0.6	56
219	Modelling of igneous fractionation and other processes using Pearce diagrams. Contributions To Mineralogy and Petrology, 1988, 100, 12-18.	1.2	32
220	The Abitibi dyke swarm: a consequence of Superior—Grenville interaction?. Tectonophysics, 1986, 121, 357-363.	0.9	7
221	Paleomagnetism of the Hearst dike swarm and implications for the tectonic history of the Kapuskasing Structural Zone, northern Ontario. Canadian Journal of Earth Sciences, 1984, 21, 1499-1506.	0.6	50
222	Mafic magmatism in the Belt-Purcell Basin and Wyoming Province of western Laurentia. Special Paper of the Geological Society of America, 0, , 243-282.	0.5	3
223	Giant Radiating Dyke Swarms: Their Use in Identifying Pre-Mesozoic Large Igneous Provinces and Mantle Plumes. Geophysical Monograph Series, 0, , 297-333.	0.1	116