
Gianpiero Garau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2142555/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neutralization of the anthrax toxin by antibody-mediated stapling of its membrane-penetrating loop. Acta Crystallographica Section D: Structural Biology, 2021, 77, 1197-1205.	2.3	2
2	Mapping, Structure and Modulation of PPI. Frontiers in Chemistry, 2021, 9, 718405.	3.6	29
3	Development of potent dual PDK1/AurA kinase inhibitors for cancer therapy: Lead-optimization, structural insights, and ADME-Tox profile. European Journal of Medicinal Chemistry, 2021, 226, 113895.	5.5	3
4	Novel Dual PDK1/AurK-A Inhibitors for Cancer Therapy: Med Chem Evolution and Crystallographic Investigation. Proceedings (mdpi), 2019, 22, .	0.2	2
5	Mechanism of Action of the Tumor Vessel Targeting Agent NGR-hTNF: Role of Both NGR Peptide and hTNF in Cell Binding and Signaling. International Journal of Molecular Sciences, 2019, 20, 4511.	4.1	14
6	Nanobeam precession-assisted 3D electron diffraction reveals a new polymorph of hen egg-white lysozyme. IUCrJ, 2019, 6, 178-188.	2.2	56
7	Role of Cln222 in Photoswitching of <i>Aequorea</i> Fluorescent Proteins: A Twisting and H-Bonding Affair?. ACS Chemical Biology, 2018, 13, 2082-2093.	3.4	14
8	Synthesis and characterization of the first inhibitor of <i>N</i> -acylphosphatidylethanolamine phospholipase D (NAPE-PLD). Chemical Communications, 2017, 53, 12814-12817.	4.1	33
9	Facile fabrication of bioactive ultra-small protein–hydroxyapatite nanoconjugates via liquid-phase laser ablation and their enhanced osteogenic differentiation activity. Journal of Materials Chemistry B, 2017, 5, 279-288.	5.8	13
10	Bile Acid Recognition by NAPE-PLD. ACS Chemical Biology, 2016, 11, 2908-2914.	3.4	36
11	Fluorine nuclear magnetic resonance-based assay in living mammalian cells. Analytical Biochemistry, 2016, 495, 52-59.	2.4	31
12	Structure of Human N -Acylphosphatidylethanolamine-Hydrolyzing Phospholipase D: Regulation of Fatty Acid Ethanolamide Biosynthesis by Bile Acids. Structure, 2015, 23, 598-604.	3.3	77
13	Activity-Based Probe for <i>N</i> -Acylethanolamine Acid Amidase. ACS Chemical Biology, 2015, 10, 2057-2064.	3.4	25
14	Heparin/heparan sulfates bind to and modulate neuronal L-type (Cav1.2) voltage-dependent Ca2+ channels. Experimental Neurology, 2015, 274, 156-165.	4.1	10
15	Fluorine NMRâ€Based Screening on Cell Membrane Extracts. ChemMedChem, 2014, 9, 286-289.	3.2	12
16	Development of Fragmentâ€Based <i>n</i> â€FABS NMR Screening Applied to the Membrane Enzyme FAAH. ChemBioChem, 2013, 14, 1611-1619.	2.6	19
17	A Binding Site for Nonsteroidal Anti-inflammatory Drugs in Fatty Acid Amide Hydrolase. Journal of the American Chemical Society, 2013, 135, 22-25.	13.7	51
18	β-Lactones Inhibit <i>N</i> -acylethanolamine Acid Amidase by S-Acylation of the Catalytic N-Terminal Cysteine. ACS Medicinal Chemistry Letters, 2012, 3, 422-426.	2.8	36

GIANPIERO GARAU

#	Article	IF	CITATIONS
19	A catalytically silent FAAH-1 variant drives anandamide transport in neurons. Nature Neuroscience, 2012, 15, 64-69.	14.8	150
20	Active site plasticity revealed from the structure of the enterobacterial N-ribohydrolase RihA bound to a competitive inhibitor. BMC Structural Biology, 2010, 10, 14.	2.3	7
21	Energy Landscapes Associated with Macromolecular Conformational Changes from Endpoint Structures. Journal of the American Chemical Society, 2010, 132, 17570-17577.	13.7	17
22	Structural basis for the broad-spectrum inhibition of metallo-β-lactamases by thiols. Organic and Biomolecular Chemistry, 2008, 6, 2282.	2.8	118
23	Mutational analysis of the zinc- and substrate-binding sites in the CphA metallo-β-lactamase from <i>Aeromonas hydrophila</i> . Biochemical Journal, 2008, 414, 151-159.	3.7	33
24	Structural Insights into the Design of Inhibitors for the L1 Metallo-β-lactamase from Stenotrophomonas maltophilia. Journal of Molecular Biology, 2008, 375, 257-269.	4.2	77
25	Competitive Inhibitors of the CphA Metallo-β-Lactamase from Aeromonas hydrophila. Antimicrobial Agents and Chemotherapy, 2007, 51, 2136-2142.	3.2	54
26	Green Fluorescent Protein Ground States:  The Influence of a Second Protonation Site near the Chromophore,. Biochemistry, 2007, 46, 5494-5504.	2.5	60
27	Spectroscopic and Structural Study of Proton and Halide Ion Cooperative Binding to GFP. Biophysical Journal, 2007, 93, 232-244.	0.5	75
28	Protonation state and substrate binding to B2 metalloâ€Î²â€lactamase CphA from <i>Aeromonas hydrofila</i> . Proteins: Structure, Function and Bioinformatics, 2007, 69, 595-605.	2.6	33
29	Structural basis for mammalian vitamin B12 transport by transcobalamin. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4386-4391.	7.1	169
30	Crystal Structure of Phosphorylcholine Esterase Domain of the Virulence Factor Choline-binding Protein E from Streptococcus pneumoniae. Journal of Biological Chemistry, 2005, 280, 28591-28600.	3.4	55
31	Structure-Based Phylogeny of the Metallo-β-Lactamases. Antimicrobial Agents and Chemotherapy, 2005, 49, 2778-2784.	3.2	86
32	A Metallo-Î ² -lactamase Enzyme in Action: Crystal Structures of the Monozinc Carbapenemase CphA and its Complex with Biapenem. Journal of Molecular Biology, 2005, 345, 785-795.	4.2	231
33	Update of the Standard Numbering Scheme for Class B β-Lactamases. Antimicrobial Agents and Chemotherapy, 2004, 48, 2347-2349.	3.2	270
34	Val-Ala Dipeptide Isosteres by Hydrocyanation of α′-Amino α,β-Unsaturated Ketones â^' Control of Stereoselectivity by the N-Protecting Group. European Journal of Organic Chemistry, 2003, 2003, 1973-1982.	2.4	9
35	Crystal chemistry and binding of NO2, SCN and SeCN to Co in cobalamins. Acta Crystallographica Section B: Structural Science, 2003, 59, 51-59.	1.8	35
36	Relationship between hydrogen-bonding network and reduction potential inc-type cytochromes. FEBS Letters, 2002, 516, 285-286.	2.8	9

#	Article	IF	CITATIONS
37	Cleavage of the ironâ€methionine bond in câ€type cytochromes: Crystal structure of oxidized and reduced cytochrome c ₂ from <i>Rhodopseudomonas palustris</i> and its ammonia complex. Protein Science, 2002, 11, 6-17.	7.6	Ο
38	Cleavage of the iron-methionine bond in c-type cytochromes: Crystal structure of oxidized and reduced cytochrome c2 from Rhodopseudomonas palustris and its ammonia complex. Protein Science, 2002, 11, 6-17.	7.6	26
39	Crystallization and preliminary X-ray diffraction analysis of human transcobalamin, a vitamin B12-transporting protein. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1890-1892.	2.5	7
40	Crystallization and preliminary X-ray analysis of two pH-dependent forms of cytochromec2fromRhodopseudomonas palustris. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 1699-1701.	2.5	6
41	Penicillin G amidase in low-water media: immobilisation and control of water activity by means of celite rods. Journal of Molecular Catalysis B: Enzymatic, 1999, 6, 437-445.	1.8	20