Leidong Mao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2142552/publications.pdf

Version: 2024-02-01

331670 302126 1,683 45 21 39 citations h-index g-index papers 46 46 46 2042 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	High Density Orthogonal Surface Immobilization via Photoactivated Copper-Free Click Chemistry. Journal of the American Chemical Society, 2010, 132, 11024-11026.	13.7	203
2	Label-free cellular manipulation and sorting via biocompatible ferrofluids. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21478-21483.	7.1	158
3	Magnetic Nanoparticle-Based Hyperthermia for Head & Neck Cancer in Mouse Models. Theranostics, 2012, 2, 113-121.	10.0	143
4	Labelâ€Free Microfluidic Manipulation of Particles and Cells in Magnetic Liquids. Advanced Functional Materials, 2016, 26, 3916-3932.	14.9	123
5	Continuous-flow ferrohydrodynamic sorting of particles and cells in microfluidic devices. Microfluidics and Nanofluidics, 2012, 13, 645-654.	2.2	99
6	Continuous separation of non-magnetic particles inside ferrofluids. Microfluidics and Nanofluidics, 2010, 9, 1003-1009.	2.2	83
7	Analytical model of microfluidic transport of non-magnetic particles in ferrofluids under the influence of a permanent magnet. Microfluidics and Nanofluidics, 2011, 10, 1233-1245.	2.2	82
8	Labelâ€Free and Continuousâ€Flow Ferrohydrodynamic Separation of HeLa Cells and Blood Cells in Biocompatible Ferrofluids. Advanced Functional Materials, 2016, 26, 3990-3998.	14.9	77
9	Focusing microparticles in a microfluidic channel with ferrofluids. Microfluidics and Nanofluidics, 2011, 11, 695-701.	2.2	63
10	Towards ferrofluidics for μ-TAS and lab on-a-chip applications. Nanotechnology, 2006, 17, S34-S47.	2.6	59
11	Label-free ferrohydrodynamic cell separation of circulating tumor cells. Lab on A Chip, 2017, 17, 3097-3111.	6.0	56
12	Biocompatible and label-free separation of cancer cells from cell culture lines from white blood cells in ferrofluids. Lab on A Chip, 2017, 17, 2243-2255.	6.0	55
13	Direct observation of closed-loop ferrohydrodynamic pumping under traveling magnetic fields. Physical Review B, 2011, 84, .	3.2	44
14	Combining positive and negative magnetophoreses to separate particles of different magnetic properties. Microfluidics and Nanofluidics, 2014, 17, 973-982.	2.2	43
15	Tumor antigen-independent and cell size variation-inclusive enrichment of viable circulating tumor cells. Lab on A Chip, 2019, 19, 1860-1876.	6.0	43
16	Ferrohydrodynamic pumping in spatially traveling sinusoidally time-varying magnetic fields. Journal of Magnetism and Magnetic Materials, 2005, 289, 199-202.	2.3	36
17	Three-dimensional and analytical modeling of microfluidic particle transport in magnetic fluids. Microfluidics and Nanofluidics, 2014, 16, 1143-1154.	2.2	36
18	The Magnetohydrodynamic Effect and Its Associated Material Designs for Biomedical Applications: A Stateâ€ofâ€theâ€Art Review. Advanced Functional Materials, 2016, 26, 3942-3952.	14.9	36

#	Article	IF	Citations
19	Glioma cell invasion is significantly enhanced in composite hydrogel matrices composed of chondroitin 4- and 4,6-sulfated glycosaminoglycans. Journal of Materials Chemistry B, 2016, 4, 6052-6064.	5.8	28
20	Microfluidics in Malignant Glioma Research and Precision Medicine. Advanced Biology, 2018, 2, 1700221.	3.0	25
21	Label-free ferrohydrodynamic separation of exosome-like nanoparticles. Lab on A Chip, 2020, 20, 3187-3201.	6.0	22
22	Label-free inertial-ferrohydrodynamic cell separation with high throughput and resolution. Lab on A Chip, 2021, 21, 2738-2750.	6.0	22
23	Magnetic-Field-Assisted Fabrication and Manipulation of Nonspherical Polymer Particles in Ferrofluid-Based Droplet Microfluidics. Langmuir, 2015, 31, 8531-8534.	3.5	18
24	Synchronizing stochastic circadian oscillators in single cells of Neurospora crassa. Scientific Reports, 2016, 6, 35828.	3.3	17
25	Fundamentals of integrated ferrohydrodynamic cell separation in circulating tumor cell isolation. Lab on A Chip, 2021, 21, 1706-1723.	6.0	15
26	Magnetohydrodynamic-Driven Design of Microscopic Endocapsules in MRI. IEEE/ASME Transactions on Mechatronics, 2015, 20, 2691-2698.	5.8	12
27	Thiolene-based microfluidic flow cells for surface plasmon resonance imaging. Biomicrofluidics, 2011, 5, 26501.	2.4	11
28	Ferrofluid-Based Droplet Interface Bilayer Networks. Langmuir, 2017, 33, 13000-13007.	3.5	11
29	Manipulation of Single Cells Using a Ferromagnetic Nanorod Cluster Actuated by Weak AC Magnetic Fields. Advanced Biology, 2019, 3, e1800246.	3.0	11
30	Overcoming the Diffusion Barrier: Ultra-Fast Micro-Scale Mixing Via Ferrofluids. , 2007, , .		10
31	Simultaneous biochemical and functional phenotyping of single circulating tumor cells using ultrahigh throughput and recovery microfluidic devices. Lab on A Chip, 2021, 21, 3583-3597.	6.0	9
32	Ferro-microfluidic device for pathogen detection. , 2008, , .		6
33	Single Cells of <i>Neurospora Crassa</i> Show Circadian Oscillations, Light Entrainment, Temperature Compensation, and Phase Synchronization. IEEE Access, 2019, 7, 49403-49417.	4.2	6
34	Dynamic scaling of ferromagnetic micro-rod clusters under a weak magnetic field. Soft Matter, 2016, 12, 8440-8447.	2.7	5
35	What is Phase in Cellular Clocks?. Yale Journal of Biology and Medicine, 2019, 92, 169-178.	0.2	3
36	Enhancing membrane-based soft materials with magnetic reconfiguration events. Scientific Reports, 2022, 12, 1703.	3.3	3

#	Article	IF	CITATIONS
37	Magnetic resonance conditional paramagnetic choke for suppression of imaging artifacts during magnetic resonance imaging. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2018, 232, 597-604.	1.8	2
38	Wild Isolates of Neurospora crassa Reveal Three Conidiophore Architectural Phenotypes. Microorganisms, 2020, 8, 1760.	3.6	2
39	Biomedical Engineered Ferrofluids. Materials Research Society Symposia Proceedings, 2007, 1032, 1.	0.1	1
40	Focusing microparticles in a microfluidic channel with ferrofluids. , 2011, , .		1
41	Ferrofluidic platform for cell and droplet manipulation. , 2013, , .		1
42	Active colloids: Toward an intelligent micromachine. , 2018, , 279-312.		1
43	The macroscopic limit to synchronization of cellular clocks in single cells of Neurospora crassa. Scientific Reports, 2022, 12, 6750.	3.3	1
44	Magnetically Responsive Droplet Interface Bilayer Networks. , 2015, , .		0
45	Reconfiguring ferromagnetic microrod chains by alternating two orthogonal magnetic fields. Journal of Physics Condensed Matter, 2018, 30, 315101.	1.8	0