
Andrey Lipovskii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2142230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Power Spectral Density Analysis for Optimizing SERS Structures. Sensors, 2022, 22, 593.	3.8	6
2	Peculiar electric properties of polarized layer in alkaline silicate glasses. Journal of the American Ceramic Society, 2022, 105, 3418-3427.	3.8	4
3	Control of the morphology of silver dendrites formed by glass electrolysis. Journal of Physics: Conference Series, 2022, 2227, 012024.	0.4	1
4	Giant Enhancement of Optical Second Harmonic in Poled Glasses by Cold Repoling. Journal of Physical Chemistry Letters, 2022, 13, 5932-5937.	4.6	4
5	In-situ study of the formation of sodium-niobate-silicate glass-ceramics with dielectric spectroscopy. Journal of Non-Crystalline Solids, 2021, 556, 120553.	3.1	3
6	Modification of soda-lime silicate glass under corona poling in air and nitrogen atmosphere. Journal of Non-Crystalline Solids, 2021, 554, 120599.	3.1	2
7	Rapid technique for the determination of the refractive index of experimental glasses for graded-index optics. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2021, 88, 151.	0.4	2
8	Dendritic structures by glass electrolysis: Studies and SERS capability. Current Applied Physics, 2021, 24, 54-59.	2.4	6
9	SEM-visualization of a spatial charge and a giant potassium peak in a corona-poled glass. Journal of Physics Condensed Matter, 2021, 33, 235702.	1.8	6
10	Molybdenum/tungsten disulfide solid solutions nanoparticles formation by aerosol-assisted CVD. Solid State Sciences, 2021, 115, 106583.	3.2	4
11	Controlled metallization of ion-exchanged glasses by thermal poling. Journal of Physics Condensed Matter, 2021, 33, 505001.	1.8	1
12	Depth of glass poling - via optical transmission spectra. Optik, 2021, 244, 167600.	2.9	2
13	Crystallization of K2O-TiO2-SiO2 glass below glass transition by poling. Journal of Non-Crystalline Solids, 2021, 571, 121081.	3.1	6
14	Visualization of Spatial Charge in Thermally Poled Glasses via Nanoparticles Formation. Nanomaterials, 2021, 11, 2973.	4.1	1
15	Stable in Biocompatible Buffers Silver Nanoisland Films for SERS. Biosensors, 2021, 11, 448.	4.7	4
16	Influence of dielectric overlayers on self-heating of a microdisk laser. Journal of Physics: Conference Series, 2021, 2086, 012100.	0.4	0
17	Determining the Thickness of the Poled Region in a Glass. Technical Physics Letters, 2021, 47, 237-239.	0.7	0
18	Peculiarities of ion-exchange in poled glasses. Journal of Physics: Conference Series, 2021, 2086, 012152.	0.4	3

2

#	Article	IF	CITATIONS
19	Numerical simulation of optical coupling between a microring resonator and a directly connected straight waveguide. Journal of Physics: Conference Series, 2021, 2086, 012162.	0.4	0
20	Laser-induced optical nonlinearity in a Li-rich glass. Journal of Physics: Conference Series, 2021, 2086, 012024.	0.4	0
21	SERS-Active Pattern in Silver-Ion-Exchanged Glass Drawn by Infrared Nanosecond Laser. Nanomaterials, 2020, 10, 1849.	4.1	7
22	Nanosecond Laser Surface Silver Metallization of Wet Ion Exchanged Glasses. Journal of Physics: Conference Series, 2020, 1461, 012136.	0.4	2
23	Mechanism of Thermal Charge Relaxation in Poled Silicate Glasses in a Wide Temperature Range (From) Tj ETQq1	1.0,78431 2.6	l4rgBT /Ov
24	Cathodoluminescence of a Corona-poled Soda-lime Silicate Glass. , 2020, , .		0
25	CW laserâ€initiated formation of nanoâ€Si crystals in glassâ€metal nanostructures. Journal of the American Ceramic Society, 2020, 103, 4625-4631.	3.8	0
26	Control of soda-lime glass surface crystallization with thermal poling. Journal of Non-Crystalline Solids, 2020, 533, 119899.	3.1	16
27	Thermal poling of glasses to fabricate masks for ion exchange. Journal of Physics: Conference Series, 2020, 1695, 012107.	0.4	6
28	Strip-loaded horizontal slot waveguide for routing microdisk laser emission. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 1878.	2.1	3
29	To the issue of the second harmonic generation in poled silicate glasses. Journal of Physics: Conference Series, 2020, 1695, 012131.	0.4	2
30	Dielectric surrounding bleaches the optical bond between a microdisk resonator and a straight optical waveguide. Journal of Physics: Conference Series, 2020, 1695, 012128.	0.4	1
31	Formation of silver nanoparticles in ion-exchanged glass with nanosecond laser irradiation. Journal of Physics: Conference Series, 2020, 1695, 012121.	0.4	1
32	Formation and SERS efficiency of periodic metal-dielectric nanostructures. Journal of Physics: Conference Series, 2020, 1695, 012108.	0.4	0
33	Modification of glass durability in reactive ion etching with thermal poling and ion exchange. Journal of Physics: Conference Series, 2020, 1695, 012186.	0.4	0
34	About concentration profiles in thermally poled glasses. AIP Conference Proceedings, 2020, , .	0.4	0
35	Outcoupling of microdisk laser emission by strip-loaded slot waveguide. , 2020, , .		0
36	Self-assembled silver nanoparticles in glass microstructured by poling for SERS application. Current Applied Physics, 2019, 19, 1088-1095.	2.4	8

#	Article	IF	CITATIONS
37	Spatial charge relaxation in glasses poled in the air and argon atmospheres. Journal of Physics: Conference Series, 2019, 1326, 012013.	0.4	0
38	Response to comments on "How to reveal the correct elemental concentration profiles in poled multicomponent silicate glasses from the data of secondary ion mass spectrometry (SIMS)― Journal of Non-Crystalline Solids, 2019, 523, 119553.	3.1	1
39	Coupling of plasmon and grating resonances for SERS enhancement. Journal of Physics: Conference Series, 2019, 1410, 012185.	0.4	2
40	Second harmonic generation and charge relaxation of poled glasses. Journal of Physics: Conference Series, 2019, 1410, 012148.	0.4	3
41	Kinetics of ionâ€exchangeâ€induced vitrification of glassâ€ceramics. Journal of the American Ceramic Society, 2019, 102, 3426-3431.	3.8	3
42	Modifications of poled silicate glasses under heat treatment. Journal of Non-Crystalline Solids, 2019, 503-504, 279-283.	3.1	23
43	How to reveal the correct elemental concentration profiles in poled multicomponent silicate glasses from the data of secondary ion mass spectrometry (SIMS). Journal of Non-Crystalline Solids, 2019, 503-504, 397-399.	3.1	12
44	Relief micro- and nanostructures by the reactive ion and chemical etching of poled glasses. Optical Materials Express, 2019, 9, 3059.	3.0	9
45	Lasing in Ill–V microdisk core–TiO2 shell lasers. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 2285.	2.1	4
46	Hot spot statistics and SERS performance of self-assembled silver nanoisland films. Optical Materials Express, 2019, 9, 4090.	3.0	10
47	On the origin of the low-temperature band in depolarization current spectra of poled multicomponent silicate glasses. Applied Physics Letters, 2018, 112, 151603.	3.3	2
48	Elevated temperature lasing from injection microdisk lasers on silicon. Laser Physics Letters, 2018, 15, 015802.	1.4	14
49	Nonresonant Local Fields Enhance Second-Harmonic Generation from Metal Nanoislands with Dielectric Cover. Physical Review Letters, 2018, 120, 113902.	7.8	19
50	2Dâ€structuring of glasses via thermal poling: A short review. International Journal of Applied Glass Science, 2018, 9, 24-28.	2.0	26
51	Selfâ€Assembled Silver–Gold Nanoisland Films on Glass for SERS Applications. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1700226.	2.4	16
52	Study of p-type contact topography influence on characteristics of microdisk and microring lasers. Journal of Physics: Conference Series, 2018, 1124, 041012.	0.4	3
53	Room temperature lasing from microdisk laser in aqueous medium. Journal of Physics: Conference Series, 2018, 1124, 051007.	0.4	8
54	RIE for structuring E-field processed glasses. Journal of Physics: Conference Series, 2018, 1124, 051059.	0.4	0

#	Article	IF	CITATIONS
55	Four-step fabrication of SERS-active microfluidic channels. Journal of Physics: Conference Series, 2018, 1124, 051020.	0.4	1
56	Study of charge relaxation in poled silicate glasses. Journal of Physics: Conference Series, 2018, 1124, 051026.	0.4	2
57	Dielectric surrounding decimates eigenmodes of microdisk optical resonators. Journal of Physics: Conference Series, 2018, 1124, 051031.	0.4	3
58	Influence of coating layers on characteristics of microdisk lasers with InAs/InGaAs quantum dots active region. Journal of Physics: Conference Series, 2018, 1124, 041020.	0.4	0
59	Second harmonic generation by metal core - dielectric shell spherical nanoparticles: spatial vs. plasmon resonances. Journal of Physics: Conference Series, 2018, 1124, 051028.	0.4	Ο
60	Enhanced light outcoupling in microdisk lasers via Si spherical nanoantennas. Journal of Applied Physics, 2018, 124, .	2.5	17
61	Lasing in compact injection microdisks with InAs/InGaAs quantum dots. , 2018, , .		0
62	The remarkable transformation of nanoripples in glass-metal nanocomposite. AIP Advances, 2018, 8, 065110.	1.3	0
63	Volume relaxation of poled glasses: Surface relief enhancement. Journal of Non-Crystalline Solids, 2018, 499, 360-362.	3.1	10
64	Understanding the Second-Harmonic Generation Enhancement and Behavior in Metal Core–Dielectric Shell Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 15635-15645.	3.1	17
65	Non-resonant enhancement of second-harmonic generation from metal nanoislands coated with dielectric layers. , 2018, , .		0
66	Resonant properties of coupled silver hemispheroids. Journal of Nanophotonics, 2017, 11, 032503.	1.0	1
67	3.5-μm radius race-track microlasers operating at room temperature with 1.3-μm quantum dot active region. Journal of Applied Physics, 2017, 121, 043104.	2.5	6
68	Light Outcoupling from Quantum Dot-Based Microdisk Laser via Plasmonic Nanoantenna. ACS Photonics, 2017, 4, 275-281.	6.6	39
69	Single-mode channel optical waveguides formed by the glass poling. Optik, 2017, 137, 203-208.	2.9	6
70	Tuning Plasmonic Properties of Truncated Gold Nanospheres by Coating. Plasmonics, 2017, 12, 1903-1910.	3.4	9
71	Is frozen space charge responsible for SHG in poled silicate glasses only?. Journal of Non-Crystalline Solids, 2017, 458, 118-120.	3.1	6
72	Mechanisms and Peculiarities of Electric Field Imprinting in Glasses. Journal of the Electrochemical Society, 2017, 164, E385-E390.	2.9	13

#	Article	IF	CITATIONS
73	Plasma-etching of 2D-poled glasses: A route to dry lithography. Applied Physics Letters, 2017, 111, .	3.3	15
74	Lowâ€Temperature Atmospheric Pressure Plasmaâ€Enhanced CVD of Nanocomposite Coatings "Molybdenum Disulfide (Filler)–Silicon Oxide (Matrix)― Advanced Materials Interfaces, 2017, 4, 1700241.	3.7	14
75	Numerical simulation of eigenmodes of ring and race-track optical microresonators. Journal of Physics: Conference Series, 2017, 917, 062040.	0.4	4
76	Raman enhancement by individual silver hemispheroids. Applied Surface Science, 2017, 397, 119-124.	6.1	9
77	Plasmonic nanoantenna for enhancement of vertical emission from whispering gallery mode laser. , 2017, , .		0
78	Near-field mapping of three-particle plasmonic structures. Journal of Physics: Conference Series, 2017, 917, 062012.	0.4	0
79	Electrically pumped InGaAs/GaAs quantum well microdisk lasers directly grown on Si(100) with Ge/GaAs buffer. Optics Express, 2017, 25, 16754.	3.4	13
80	Heat-sink free CW operation of injection microdisk lasers grown on Si substrate with emission wavelength beyond 13  l¼m. Optics Letters, 2017, 42, 3319.	3.3	40
81	Dark-field spectroscopy of plasmon resonance in metal nanoislands: effect of shape and light polarization. Journal of Physics: Conference Series, 2016, 769, 012040.	0.4	1
82	High-temperature lasing in diode microdisk lasers with InAs/InGaAs quantum dots. Journal of Physics: Conference Series, 2016, 769, 012056.	0.4	2
83	Microâ€Raman Spectroscopy Study of Glassâ€Ceramics with Gradient of Volume Fraction of Crystalline Phase. Journal of the American Ceramic Society, 2016, 99, 2558-2560.	3.8	4
84	Plasmonic properties of metal nanoislands: surface integral equations approach. Journal of Physics: Conference Series, 2016, 741, 012120.	0.4	0
85	Compact microdisk cavity laser with GaInNAs/GaAs quantum well. Journal of Physics: Conference Series, 2016, 741, 012110.	0.4	0
86	Microdisk lasers based on GaInNAs(Sb)/GaAs(N) quantum wells. Journal of Applied Physics, 2016, 120, .	2.5	7
87	Plasmonic properties of metal nanoislands: Practical guide. Journal of Applied Physics, 2016, 119, .	2.5	5
88	Self-organized growth of small arrays of metal nanoislands on the surface of poled ion-exchange glasses. Technical Physics Letters, 2016, 42, 93-95.	0.7	3
89	Nanoscale self-arranged layers of silver nanoparticles in glass. Chemical Physics Letters, 2016, 652, 235-238.	2.6	6
90	Second harmonic generation from hemispherical metal nanoparticle covered by dielectric layer. Journal of Nonlinear Optical Physics and Materials, 2016, 25, 1650001.	1.8	6

#	Article	IF	CITATIONS
91	Microdisk Injection Lasers for the 1.27-μm Spectral Range. Semiconductors, 2016, 50, 390-393.	0.5	13
92	Effective diffraction gratings via acidic etching of thermally poled glass. Optical Materials, 2016, 62, 250-254.	3.6	32
93	Giant Discharge Current in Thermally Poled Silicate Glasses. Journal of Physical Chemistry C, 2016, 120, 23129-23135.	3.1	11
94	Laser characteristics of an injection microdisk with quantum dots and its free-space outcoupling efficiency. Semiconductors, 2016, 50, 1408-1411.	0.5	5
95	Electrically pumped microdisk lasers with semitransparent conducting pyrolytic carbon film. Journal of Physics: Conference Series, 2016, 741, 012076.	0.4	0
96	Pendeo-epitaxy of stress-free AlN layer on a profiled SiC/Si substrate. Thin Solid Films, 2016, 606, 74-79.	1.8	10
97	Control of Glass–Metal Composite Optical Nonlinearity via Nanostructuring. Plasmonics, 2016, 11, 581-585.	3.4	3
98	2D-patterning of self-assembled silver nanoisland films. Faraday Discussions, 2016, 186, 107-121.	3.2	14
99	Revealing the nanoparticles aspect ratio in the glass-metal nanocomposites irradiated with femtosecond laser. Scientific Reports, 2015, 5, 13746.	3.3	8
100	Modes of silver nanoisland film growth on the surface of ion- exchanged glass. Journal of Physics: Conference Series, 2015, 643, 012125.	0.4	1
101	Control of surface plasmon resonance in out-diffused silver nanoislands for surface-enhanced Raman scattering. Journal of Physics: Conference Series, 2015, 661, 012034.	0.4	1
102	Room temperature continuous wave operation of injection quantum dot microdisk lasers. Journal of Physics: Conference Series, 2015, 643, 012002.	0.4	1
103	Microdisk lasers based on GaInNAsSb/GaAsN quantum well active region. Journal of Physics: Conference Series, 2015, 643, 012040.	0.4	1
104	Single-Mode Emission From 4–9-μm Microdisk Lasers With Dense Array of InGaAs Quantum Dots. Journal of Lightwave Technology, 2015, 33, 171-175.	4.6	8
105	Formation of silver fractal structures in ion-exchange glasses under poling. Technical Physics, 2015, 60, 270-274.	0.7	4
106	How Does Thermal Poling Produce Interstitial Molecular Oxygen in Silicate Glasses?. Journal of Physical Chemistry C, 2015, 119, 17298-17307.	3.1	49
107	Room Temperature Lasing in 1-μm Microdisk Quantum Dot Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 709-713.	2.9	28
108	Thermal resistance of ultra-small-diameter disk microlasers. Semiconductors, 2015, 49, 674-678.	0.5	8

#	Article	IF	CITATIONS
109	Continuousâ€wave lasing at 100°C in 1.3 µm quantum dot microdisk diode laser. Electronics Letters, 2015, 51, 1354-1355.	1.0	31
110	Mode selection in InAs quantum dot microdisk lasers using focused ion beam technique. Optics Letters, 2015, 40, 4022.	3.3	18
111	Resonant Optical Properties of Single Out-Diffused Silver Nanoislands. Journal of Physical Chemistry C, 2015, 119, 26692-26697.	3.1	10
112	Electric Properties of Hemispherical Metal Nanoparticles: Influence of the Dielectric Cover and Substrate. Plasmonics, 2015, 10, 519-527.	3.4	12
113	Nanoprofiling of alkali-silicate glasses by thermal poling. Journal of Non-Crystalline Solids, 2015, 409, 166-169.	3.1	27
114	Lasing in microdisk resonators with InAs/InGaAs quantum dots transferred on a silicon substrate. Journal of Physics: Conference Series, 2014, 541, 012049.	0.4	4
115	Electric properties of hemispherical metal nanoparticles: influence of the dielectric substrate. Journal of Physics: Conference Series, 2014, 541, 012077.	0.4	4
116	Plasmonic molecules via glass annealing in hydrogen. Nanoscale Research Letters, 2014, 9, 606.	5.7	16
117	Ultrasmall microdisk and microring lasers based on InAs/InGaAs/GaAs quantum dots. Nanoscale Research Letters, 2014, 9, 3266.	5.7	43
118	Control of emission spectra in quantum dot microdisk/microring lasers. Optics Express, 2014, 22, 25782.	3.4	15
119	Lasing in microdisks of ultrasmall diameter. Semiconductors, 2014, 48, 1626-1630.	0.5	9
120	High-Temperature Lasing and Control of Emission Spectra in Microdisk and Microring Lasers with Quantum Dots. , 2014, , .		0
121	Vibrational study of thermally ion-exchanged sodium aluminoborosilicate glasses. Journal of Non-Crystalline Solids, 2014, 401, 232-236.	3.1	31
122	Out-diffused silver island films for surface-enhanced Raman scattering protected with TiO2 films using atomic layer deposition. Nanoscale Research Letters, 2014, 9, 398.	5.7	31
123	Influece of active region and resonator design on characteristics of microdisk lasers. , 2014, , .		1
124	Self-arrangement of periodic layers of silver nanoparticles in silicate glass. Journal of Physics: Conference Series, 2014, 541, 012005.	0.4	0
125	SERS-applicable silver nanoisland film grown under protective coating. Journal of Physics: Conference Series, 2014, 541, 012073.	0.4	3
126	Plasmonic bandgap in random media. Nanoscale Research Letters, 2013, 8, 324.	5.7	8

#	Article	IF	CITATIONS
127	Nanoscale patterning of metal nanoparticle distribution in glasses. Nanoscale Research Letters, 2013, 8, 260.	5.7	15
128	Room-temperature lasing in microring cavities with an InAs/InGaAs quantum-dot active region. Semiconductors, 2013, 47, 1387-1390.	0.5	7
129	Laser generation in microdisc resonators with InAs/GaAs quantum dots transferred on a silicon substrate. Technical Physics Letters, 2013, 39, 830-833.	0.7	4
130	Mid-Range Structure of Niobium–Sodium–Phosphate Electro-Optic Glasses. Journal of Physical Chemistry B, 2013, 117, 1444-1450.	2.6	12
131	Dissolution of metal nanoparticles in glass under a dc electric field. Journal Physics D: Applied Physics, 2013, 46, 045302.	2.8	9
132	Formation and self-arrangement of silver nanoparticles in glass via annealing in hydrogen: The model. Journal of Non-Crystalline Solids, 2013, 376, 152-157.	3.1	22
133	Formation and 2D-patterning of silver nanoisland film using thermal poling and out-diffusion from glass. Journal of Applied Physics, 2013, 114, .	2.5	35
134	Ultraviolet dynamical optical limiting in a glass containing NaNbO_3 nanocrystals. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 1284.	2.1	5
135	METAL-DIELECTRIC NANOCOMPOSITES: NOVEL MATERIALS FOR PLASMONICS. , 2013, , .		0
136	SILVER NANOISLAND FILMS FABRICATED BY OUT-DIFFUSION FROM A GLASS SUBSTRATE. , 2013, , .		0
137	On the modeling of spectral map of glass-metal nanocomposite optical nonlinearity. Optics Express, 2012, 20, 12040.	3.4	1
138	Polarization of glass containing fast and slow ions. Journal of Applied Physics, 2012, 112, .	2.5	28
139	On the origin of the high Kerr coefficient measured in thallium–zinc–tellurite glasses. Journal of Non-Crystalline Solids, 2012, 358, 1870-1872.	3.1	1
140	High-temperature lasing in a microring laser with an active region based on InAs/InGaAs quantum dots. Semiconductors, 2012, 46, 1040-1043.	0.5	11
141	Self-assembled silver nanoislands formed on glass surface via out-diffusion for multiple usages in SERS applications. Nanoscale Research Letters, 2012, 7, 676.	5.7	40
142	On the stability of elastic nanoparticles. Physica Status Solidi (B): Basic Research, 2012, 249, 2137-2139.	1.5	2
143	Spatially periodical poling of silica glass. Journal of Applied Physics, 2012, 111, .	2.5	16
144	Femtosecond third-harmonic generation in a glass ceramic containing sodium niobate nanocrystals. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 1077.	2.1	4

#	Article	IF	CITATIONS
145	Bleaching versus poling: Comparison of electric field induced phenomena in glasses and glass-metal nanocomposites. Journal of Applied Physics, 2011, 109, .	2.5	26
146	Electric field and spatial charge formation in glasses and glassy nanocomposites. Journal of Applied Physics, 2011, 109, .	2.5	9
147	Luminescence properties and optical dephasing in a glass-ceramic containing sodium-niobate nanocrystals. Journal of Applied Physics, 2011, 109, .	2.5	9
148	Mass transfer in thermo-electric-field modification of glass-metal nanocomposites. Technical Physics, 2010, 55, 1600-1608.	0.7	9
149	Modeling charge transfer dynamics and electric field distribution in glasses during poling and electrostimulated diffusion. Technical Physics Letters, 2010, 36, 1028-1031.	0.7	3
150	Imprinting phase/amplitude patterns in glasses with thermal poling. Solid State Ionics, 2010, 181, 849-855.	2.7	40
151	Raman optical amplification properties of sodium–niobium–phosphate glasses. Applied Physics Letters, 2010, 97, .	3.3	43
152	How Does Thermal Poling Affect the Structure of Soda-Lime Glass?. Journal of Physical Chemistry C, 2010, 114, 12754-12759.	3.1	117
153	Submicron Surface Relief Formation Using Thermal Poling of Glasses. E-Journal of Surface Science and Nanotechnology, 2009, 7, 617-620.	0.4	12
154	Enhanced Raman gain coefficients and bandwidths of sodium-niobium-phosphate glasses for Raman gain media. , 2009, , .		2
155	Raman gain in niobium-phosphate glasses. Applied Physics Letters, 2009, 94, .	3.3	36
156	Hyper-Rayleigh scattering from BaTiO3 and PbTiO3 nanocrystals. Chemical Physics Letters, 2009, 467, 335-338.	2.6	30
157	Kerr studies of several tellurite glasses. Journal of Non-Crystalline Solids, 2009, 355, 2195-2198.	3.1	6
158	Passive mode locking of 209 μm Cr,Tm,Ho:Y_3Sc_2Al_3O_12 laser using PbS quantum-dot-doped glass. Optics Letters, 2009, 34, 3403.	3.3	37
159	Spectral mapping of the third-order optical nonlinearity of glass-metal nanocomposites. Optics Express, 2009, 17, 17170.	3.4	9
160	Passive mode-locking of a Ho:YSAG laser with PbS-quantum dot-doped glass. , 2009, , .		0
161	OPTICAL WAVEGUIDES IN GLASSES DOPED WITH LEAD SULFIDE QUANTUM DOTS. , 2009, , .		0
162	Ultrafast Dephasing Time Measurements in a Niobic-Silicate Nanocomposite Using Incoherent Light. , 2009, , .		0

#	Article	IF	CITATIONS
163	CW laser discoloration of X-ray irradiated silver doped silicate glasses. Optical Materials, 2008, 30, 1715-1722.	3.6	6
164	Electric field imprinting of sub-micron patterns in glass–metal nanocomposites. Nanotechnology, 2008, 19, 415304.	2.6	44
165	Submicron-resolved relief formation in poled glasses and glass-metal nanocomposites. Technical Physics Letters, 2008, 34, 1030-1033.	0.7	45
166	Influence of reduction-oxidation synthesis conditions on the nature of color centers in silicate glass doped with selenium. Glass Physics and Chemistry, 2008, 34, 155-159.	0.7	3
167	Fluorophosphate glasses doped with PbSe quantum dots and their nonlinear optical characteristics. Glass Physics and Chemistry, 2008, 34, 351-355.	0.7	12
168	Semiconductor-doped glass saturable absorbers for near-infrared solid-state lasers. Journal of Applied Physics, 2008, 103, .	2.5	54
169	Phosphate glasses for GRIN structures by ion exchange. Journal of Non-Crystalline Solids, 2008, 354, 1142-1145.	3.1	10
170	Aluminum-boro-silicate glasses for ion exchange: Characterization and influence of diffusion non-linearity. Journal of Non-Crystalline Solids, 2008, 354, 1164-1168.	3.1	2
171	Electrooptical Kerr phenomenon and Raman spectroscopy of one lithium–niobium–silicate glass-forming system. Journal of Non-Crystalline Solids, 2008, 354, 1245-1249.	3.1	11
172	Ion-exchange-induced formation of glassy electrooptical and nonlinear optical nanomaterial. Journal of Non-Crystalline Solids, 2008, 354, 1369-1372.	3.1	10
173	<title>Nanostructure of glasses: experimental evidence</title> . , 2008, , .		1
174	Nonlinear absorption of transparent glass ceramics containing sodium niobate nanocrystals. Physical Review B, 2007, 76, .	3.2	18
175	Femtosecond absorption bleaching in glasses with semiconductor nanoparticles. , 2007, 6582, 278.		0
176	Spatially Periodic Formation of Nanoparticles in Metal-Doped Glasses. Defect and Diffusion Forum, 2007, 263, 57-62.	0.4	1
177	High index contrast hole-free photonic crystal fiber. , 2007, , .		0
178	Femtosecond absorption dynamics in glass-metal nanocomposites. Optics Express, 2007, 15, 6840.	3.4	26
179	Formation of glass-metal metamaterials via reactive diffusion: a model. , 2007, , .		0
180	Formation of nanoclusters through silver reduction in glasses: The model. Journal of Non-Crystalline Solids, 2007, 353, 2263-2271.	3.1	41

#	Article	IF	CITATIONS
181	Formation of nanoclusters in silver-doped glasses in wet atmosphere. Journal of Physics: Conference Series, 2007, 61, 508-512.	0.4	19
182	Formation of nanostructures of the core-shell type upon diffusion phase decomposition of fluorophosphate glasses. Glass Physics and Chemistry, 2007, 33, 569-575.	0.7	0
183	Nonlinearity of refractive index in glasses based on heavy metal oxides with different lead and tellurium contents. Journal of Applied Spectroscopy, 2007, 74, 866-871.	0.7	14
184	Nonlinear Absorption in Glass-Ceramics Containing Sodium Niobate Nanocrystals. , 2007, , .		0
185	RELAXATION PROCESSES IN LEAD SULFIDE QUANTUM DOTS. , 2007, , .		0
186	Holmium lasers passively Q-switched with PbS quantum-dot-doped glasses. Applied Optics, 2006, 45, 536.	2.1	18
187	Diffusion nonlinearity in aluminum–boron silicate glasses for ion-exchanged GRIN structures: A simple technique to evaluate diffusion nonlinearity of glasses. Optical Materials, 2006, 28, 276-284.	3.6	5
188	Electric-field-induced bleaching of ion-exchanged glasses containing copper nanoparticles. Technical Physics Letters, 2006, 32, 275-277.	0.7	33
189	Second harmonic scattered light from a transparent glass-ceramic containing sodium niobate nanocrystals. Applied Physics Letters, 2006, 89, 031901.	3.3	24
190	Nonlinear spectroscopy of PbS quantum-dot-doped glasses as saturable absorbers for the mode locking of solid-state lasers. Journal of Applied Physics, 2006, 100, 023108.	2.5	23
191	<title>Passive <emph type="1">Q</emph>-switching of 2-μm holmium lasers with PbS-quantum dot-doped glass</title> . , 2005, 6054, 16.		1
192	Investigation into the Growth Kinetics of CdTe Nanocrystals in Germanophosphate Glasses by Optical Spectroscopy. Glass Physics and Chemistry, 2005, 31, 713-720.	0.7	4
193	<title>Lead sulfide quantum dots for mode-locking and Q-switching of near IR lasers</title> . , 2005, , .		1
194	Multicomponent glasses for electrooptical fibers. Journal of Non-Crystalline Solids, 2005, 351, 1046-1053.	3.1	11
195	Is it possible to use ion exchange in glasses for producing effective diffraction gratings?. Journal of Non-Crystalline Solids, 2005, 351, 3784-3788.	3.1	5
196	PbS-doped Glass Saturable Absorbers for Mode-Locked and Q-Switched Near-IR Lasers. , 2005, , .		1
197	PbSe quantum-dot-doped phosphate glasses as material for saturable absorbers for 1- to 3-μm spectral region. , 2004, , .		2
198	Optical waveguides in electrooptical nanophase glass–ceramics. Materials Letters, 2004, 58, 1231-1233.	2.6	15

#	Article	IF	CITATIONS
199	Phase transformations in Na2O–K2O–Nb2O5–SiO2 glasses. Journal of Non-Crystalline Solids, 2004, 345-346, 182-186.	3.1	19
200	Third-order optical nonlinearity of a transparent glass ceramic containing sodium niobate nanocrystals. Physical Review B, 2004, 69, .	3.2	56
201	Diode-pumped Nd:YVO 4 and Nd:KGd(WO 4) 2 1.3 μm lasers passively Q-switched with PbS-doped glass. Applied Physics B: Lasers and Optics, 2003, 76, 253-256.	2.2	18
202	Exchange interaction and acoustical phonon modes in CdTe nanocrystals. Solid State Communications, 2003, 127, 439-442.	1.9	12
203	Raman spectroscopy and the origin of electrooptical Kerr phenomenon in niobium alkali-silicate glasses. Optical Materials, 2003, 21, 749-757.	3.6	59
204	Microfabrication of structures by laser light in metal-doped glasses. Optical Materials, 2003, 24, 401-410.	3.6	15
205	The origin of electrooptical sensitivity of glassy materials: crystal motifs in glasses. Journal of Non-Crystalline Solids, 2003, 318, 268-283.	3.1	31
206	<title>Structural peculiarities of niobate glasses for electro-optical applications</title> ., 2003, , .		2
207	1.5-µm Intraband Transitions in PbSe Quantum Dots. Japanese Journal of Applied Physics, 2003, 42, L123-L125.	1.5	4
208	Mass Transfer in Optical Nanocomposites Induced by Pulsed Laser Irradiation. Solid State Phenomena, 2003, 94, 105-114.	0.3	6
209	Near-infrared nonlinear properties of a glass–ceramic containing sodium niobate nanocrystals. Journal of Applied Physics, 2003, 94, 6223-6225.	2.5	13
210	Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam. Journal of Applied Physics, 2003, 93, 2343-2348.	2.5	31
211	Origin of electrooptical sensitivity of glasses. , 2003, , .		Ο
212	Niobium phosphate glasses doped with rare earths. , 2003, , .		2
213	Two- and three-dimensional periodic structures produced by nano-pulsed laser irradiation in Ag-doped glass. , 2003, , .		0
214	Ultrafast exciton recombination in PbS quantum dots. , 2003, , .		1
215	Optical recording in silver-doped glasses by a femtosecond laser. Applied Physics Letters, 2003, 83, 554-556.	3.3	6
216	PbS-doped phosphate glasses saturable absorbers for 1.3μm neodymium lasers. , 2003, 4829, 113.		0

13

#	Article	IF	CITATIONS
217	NON-LINEAR OPTICAL PROPERTIES OF IV-VI SEMICONDUCTOR QUANTUM DOTS. , 2003, , .		1
218	Whispering gallery modes in simply made glass microspheres. , 2003, , .		0
219	<title>Whispering gallery modes in glass microspheres made by simple technology</title> . , 2002, 5023, 120.		Ο
220	Nonlinear optical properties of PbS and PbSe quantum dots in glassy matrices. , 2002, 4748, 375.		3
221	Electron-Hole Exchange Induced Stokes Shift in CdTe Nanocrystals. Physica Status Solidi (B): Basic Research, 2002, 229, 453-456.	1.5	7
222	PbS-doped phosphate glasses saturable absorbers for 1.3-μm neodymium lasers. Applied Physics B: Lasers and Optics, 2002, 75, 841-846.	2.2	41
223	Picosecond Z-scan measurements on a glass-ceramic containing sodium niobate nanocrystals. Optics Communications, 2002, 203, 441-444.	2.1	23
224	Title is missing!. Instruments and Experimental Techniques, 2002, 45, 550-554.	0.5	10
225	Fluorophosphate Glasses with Quantum Dots Based on Lead Sulfide. Glass Physics and Chemistry, 2002, 28, 251-255.	0.7	17
226	Fluorophosphate Glasses Containing PbSe Quantum Dots. Glass Physics and Chemistry, 2002, 28, 246-250.	0.7	17
227	1.3 -Î $^1\!\!/4$ m neodymium laser passively mode-locked with PbS-doped phosphate glass. , 2002, , .		0
228	Passively Q-switched Ho3+:Y3Al5O12 laser using a PbSe-doped glass. Applied Physics Letters, 2001, 78, 572-573.	3.3	28
229	Photoluminescence Stokes shift and exciton fine structure in CdTe nanocrystals. Physical Review B, 2001, 64, .	3.2	49
230	<title>Phase and polarization distortions of high-power laser radiation passing through the optics of the wide-aperture spatial filter</title> . , 2001, , .		0
231	Passive Q-switch operation of PbSe-doped glass at 2.1 μm. , 2001, 4350, 32.		3
232	A study of the preparation and properties of copper-containing optical planar glass waveguides. Solid State lonics, 2001, 141-142, 609-615.	2.7	21
233	Formation of photonic structures in glasses through phase separation. Solid State Communications, 2001, 117, 733-737.	1.9	10
234	Formation of thick glass-ceramics films by ion-exchange. Journal of the European Ceramic Society, 2001, 21, 2015-2018.	5.7	16

#	Article	IF	CITATIONS
235	PbS(Se) Quantum Dot Doped Glass Applications as Laser Passive Q-Switches. Physica Status Solidi (B): Basic Research, 2001, 224, 253-256.	1.5	23
236	Characterization of Er-doped sodium-niobium phosphate glasses. , 2001, 4282, 210.		35
237	Prototype of hybrid diffractive/graded-index splitter for fiber optics. Optical Engineering, 2001, 40, 1507.	1.0	15
238	<title>Electro-optic glasses and glass ceramics for elements controlling laser radiation</title> . , 2001, 4353, 23.		4
239	Optical limiting behavior of a glass–ceramic containing sodium niobate crystallites. Applied Physics Letters, 2001, 79, 584-586.	3.3	68
240	Complementary detection of confined acoustic phonons in quantum dots by coherent phonon measurement and Raman scattering. Physical Review B, 2001, 64, .	3.2	43
241	Mechanism of microlens formation in quantum dot glasses under continuous-wave laser irradiation. Journal of Applied Physics, 2001, 89, 8273-8278.	2.5	16
242	Strong confinement of PbSe and PbS quantum dots. Journal of Luminescence, 2000, 87-89, 491-493.	3.1	44
243	New glasses for graded-index optics: influence of non-linear diffusion in the formation of optical microstructures. Optical Materials, 2000, 14, 145-153.	3.6	32
244	Characterization of ion diffusion process in glasses with simple mode-index measurements. Optical Materials, 2000, 14, 115-120.	3.6	9
245	Size-dependent picosecond energy relaxation in PbSe quantum dots. Applied Physics Letters, 2000, 77, 504-506.	3.3	31
246	Application of CdSe-nanocrystallite-doped glass for temperature measurements in fiber sensors. Optical Engineering, 2000, 39, 2182.	1.0	10
247	Glass doped with PbS quantum dots for passive Q switching of a 154-µm laser. Applied Optics, 2000, 39, 4345.	2.1	35
248	Optical absorption in PbSe spherical quantum dots embedded in glass matrix. Journal of Applied Physics, 2000, 88, 750-757.	2.5	39
249	Recording in Quantum Dot Glasses by Pulsed Laser Irradiation. , 2000, , 257-267.		3
250	Synthesis of monodisperse PbS quantum dots in phosphate glass. Physica E: Low-Dimensional Systems and Nanostructures, 1999, 5, 157-160.	2.7	51
251	Formation and growth of semiconductor nanocrystals in phosphate glass matrix. Journal of the European Ceramic Society, 1999, 19, 865-869.	5.7	16
252	Quantum confinement in CdSxSe1â^'x spherical nanocrystals in a fluorophosphate glass matrix. Physics of the Solid State, 1999, 41, 1378-1382.	0.6	0

#	Article	IF	CITATIONS
253	Effect of anisotropy of band structure on optical gain in spherical quantum dots based on PbS and PbSe. Semiconductors, 1999, 33, 1304-1308.	0.5	9
254	Growth and optical properties of CdSxSe1â^'x nanocrystals embedded in a novel phosphate glass. Journal of Materials Science, 1999, 34, 887-890.	3.7	7
255	Formation and modelling of optically waveguiding structures in a high-concentration Er-doped phosphate glass. Journal Physics D: Applied Physics, 1999, 32, L9-L12.	2.8	6
256	Anisotropy-induced optical transitions in PbSe and PbS spherical quantum dots. Physical Review B, 1999, 59, 15402-15404.	3.2	78
257	Nonlinear optical properties of novel phosphate glasses doped with CdSe quantum dots. , 1999, , .		Ο
258	Magneto-optical properties of CdS nanoparticles embedded in phosphate glass. Chemical Physics Letters, 1998, 295, 249-256.	2.6	20
259	Size-Dependent Temperature Variation of the Energy Gap in Lead-Salt Quantum Dots. Physical Review Letters, 1998, 81, 3539-3542.	7.8	244
260	Effect of spin-orbit splitting on electron-hole transitions in microscopic CdS and CdTe crystals. Physics of the Solid State, 1998, 40, 794-795.	0.6	1
261	Laser induced growth of copper particles embedded in a glass matrix. , 1998, , .		Ο
262	Nonlinear spectroscopy of phosphate glasses containing cadmium selenide nanoparticles. Quantum Electronics, 1998, 28, 715-718.	1.0	2
263	Temperature fiber sensor based on semiconductor nanocrystallite-doped phosphate glasses. Applied Physics Letters, 1998, 73, 541-543.	3.3	9
264	Formation of II-VI nanocrystals in a novel phosphate glass. Journal of Crystal Growth, 1998, 184-185, 365-369.	1.5	0
265	Novel fluorine-phosphate semiconductor doped glasses: Linear and nonlinear optical properties. Journal of Applied Physics, 1997, 81, 6934-6938.	2.5	2
266	Optical properties of novel phosphate glasses with embedded semiconductor nanocrystals. , 1997, 2967, 30.		4
267	PbSe quantum dot doped phosphate glass. Electronics Letters, 1997, 33, 101.	1.0	24
268	<title>Hole spectrum in CdS quantum dots</title> . , 1997, , .		2
269	Synthesis and characterization of PbSe quantum dots in phosphate glass. Applied Physics Letters, 1997, 71, 3406-3408.	3.3	220
270	Cadmium sulfide-selenide doped glasses: silicate and phosphate glass matrices. Journal of Non-Crystalline Solids, 1997, 221, 18-26.	3.1	12

#	Article	IF	CITATIONS
271	Structure and properties of ion-exchanged Na2Oî—,Cu2Oî—,Al2O3î—,SiO2 glass system. Journal of Non-Crystalline Solids, 1997, 222, 120-124.	3.1	1
272	Formation of nonlinear optical waveguides by using ion-exchange and implantation techniques. Nuclear Instruments & Methods in Physics Research B, 1996, 116, 507-510.	1.4	30
273	High optical nonlinearity of CdSxSe1â^x microcrystals in fluorine-phosphate glass. Optics Communications, 1996, 132, 307-310.	2.1	18
274	Study of optically waveguiding structures formed in potassium titanyl phosphate by ion exchange. Optical Engineering, 1994, 33, 2632.	1.0	0
275	<title>Study of a silicate glass doped with Cd-S-Se nanocrystals and optical waveguides formed with
Cs-K ion exchange</title> . , 1994, , .		0
276	<title>CdS microcrystalline-doped phosphorous glasses</title> . , 1994, , .		0
277	Characterization of waveguides fabricated by titanium diffusion in magnesium-doped lithium niobate. Journal of the Optical Society of America B: Optical Physics, 1988, 5, 285.	2.1	21
278	Application of Gradient Index Gratings to Evaluation of Diffusion Parameters for Waveguide Fabrication. Journal of Optical Communications, 1987, 8, .	4.7	7
279	A taper coupler for integrated optics formed by ion-exchange under a non-uniform electric field. Optics Communications, 1987, 61, 11-15.	2.1	5
280	Acousticooptical interaction of surface waves in waveguide structures. Radiophysics and Quantum Electronics, 1984, 27, 452-456.	0.5	0
281	Diffraction of light by ultrasound in anisotropic media. Radiophysics and Quantum Electronics, 1983, 26, 762-768.	0.5	Ο
282	Determination of burnup and isotope composition for spent Wi¿½R-365 fuel. Soviet Atomic Energy, 1980, 49, 673-678.	0.1	7
283	Nonlinear refractive behavior of a transparent glass-ceramic containing NaNbO/sub 3/ nanocrystals in the infrared. , 0, , .		0
284	An Investigation of the Sensitivity of a Microdisk Laser to a Change in the Refractive Index of the Environment. Technical Physics Letters, 0, , .	0.7	0