Rodney C Ewing

List of Publications by Citations

Source: https://exaly.com/author-pdf/2141976/rodney-c-ewing-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

351 papers

14,929 citations

61 h-index

108 g-index

369 ext. papers

16,489 ext. citations

5.9 avg, IF

6.62 L-index

#	Paper	IF	Citations
351	Nuclear waste disposalpyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and thinortactinides. <i>Journal of Applied Physics</i> , 2004 , 95, 5949-5971	2.5	834
350	Solubility of gold in arsenian pyrite. <i>Geochimica Et Cosmochimica Acta</i> , 2005 , 69, 2781-2796	5.5	518
349	Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia. <i>Science</i> , 2006 , 314, 638-41	33.3	348
348	The radiation-induced crystalline-to-amorphous transition in zircon. <i>Journal of Materials Research</i> , 1994 , 9, 688-698	2.5	346
347	Nuclear fuel in a reactor accident. <i>Science</i> , 2012 , 335, 1184-8	33.3	328
346	Radiation Effects in Glasses Used for Immobilization of High-level Waste and Plutonium Disposition. <i>Journal of Materials Research</i> , 1997 , 12, 1948-1978	2.5	323
345	The corrosion of uraninite under oxidizing conditions. <i>Journal of Nuclear Materials</i> , 1992 , 190, 133-156	3.3	300
344	Radiation effects in ceramics. <i>Journal of Nuclear Materials</i> , 1994 , 216, 291-321	3.3	271
343	Radiation-induced amorphization of rare-earth titanate pyrochlores. <i>Physical Review B</i> , 2003 , 68,	3.3	264
342	The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. <i>Geochimica Et Cosmochimica Acta</i> , 2014 , 140, 644-670	5.5	257
341	Trace metal nanoparticles in pyrite. <i>Ore Geology Reviews</i> , 2011 , 42, 32-46	3.2	245
340	Long-term storage of spent nuclear fuel. <i>Nature Materials</i> , 2015 , 14, 252-7	27	223
339	Fluorescent, superparamagnetic nanospheres for drug storage, targeting, and imaging: a multifunctional nanocarrier system for cancer diagnosis and treatment. <i>ACS Nano</i> , 2010 , 4, 5398-404	16.7	222
338	Targeting Negative Surface Charges of Cancer Cells by Multifunctional Nanoprobes. <i>Theranostics</i> , 2016 , 6, 1887-98	12.1	207
337	Invisible bold revealed: Direct imaging of gold nanoparticles in a Carlin-type deposit. <i>American Mineralogist</i> , 2004 , 89, 1359-1366	2.9	206
336	A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance. <i>Geochimica Et Cosmochimica Acta</i> , 2008 , 72, 2919-2933	5.5	195
335	Plutonium immobilization and radiation effects. <i>Science</i> , 2000 , 289, 2051-2	33.3	186

334	High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. <i>Nature Communications</i> , 2017 , 8, 15634	17.4	177
333	Incorporation mechanisms of actinide elements into the structures of U6+ phases formed during the oxidation of spent nuclear fuel. <i>Journal of Nuclear Materials</i> , 1997 , 245, 1-9	3.3	176
332	Dual surface-functionalized Janus nanocomposites of polystyrene/FeD@SiOlfor simultaneous tumor cell targeting and stimulus-induced drug release. <i>Advanced Materials</i> , 2013 , 25, 3485-9	24	168
331	Fluorescent Polystyrene E e3O4 Composite Nanospheres for In Vivo Imaging and Hyperthermia. <i>Advanced Materials</i> , 2009 , 21, 2170-2173	24	163
330	Review of A2B2O7 pyrochlore response to irradiation and pressure. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2010 , 268, 2951-2959	1.2	154
329	Application of high-angle annular dark field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive X-ray spectrometry, and energy-filtered transmission electron microscopy to the characterization of nanoparticles in the environment.	10.3	149
328	Probing disorder in isometric pyrochlore and related complex oxides. <i>Nature Materials</i> , 2016 , 15, 507-11	127	133
327	First-principles calculation of defect-formation energies in the Y2(Ti,Sn,Zr)2O7 pyrochlore. <i>Physical Review B</i> , 2004 , 70,	3.3	123
326	Evolution of uranium and thorium minerals. <i>American Mineralogist</i> , 2009 , 94, 1293-1311	2.9	121
325	Patterning Metallic Nanostructures by Ion-Beam-Induced Dewetting and Rayleigh Instability. <i>Nano Letters</i> , 2006 , 6, 1047-1052	11.5	121
324	Direct identification of trace metals in fine and ultrafine particles in the Detroit urban atmosphere. <i>Environmental Science & Environmental </i>	10.3	120
323	Single-ion tracks in Gd2Zr2⊠TixO7 pyrochlores irradiated with swift heavy ions. <i>Physical Review B</i> , 2009 , 79,	3.3	117
322	Geochemical alteration of pyrochlore group minerals; pyrochlore subgroup. <i>American Mineralogist</i> , 1995 , 80, 732-743	2.9	109
321	Metamictization of zircon: Raman spectroscopic study. <i>Journal of Physics Condensed Matter</i> , 2000 , 12, 1915-1925	1.8	108
320	The metamict state: 1993 [the centennial. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1994 , 91, 22-29	1.2	107
319	In vivo Imaging and Drug Storage by Quantum-Dot-Conjugated Carbon Nanotubes. <i>Advanced Functional Materials</i> , 2008 , 18, 2489-2497	15.6	101
318	Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in FeDD nanoparticles for biomedical applications. <i>Materials Science and Engineering C</i> , 2014 , 42, 52-63	8.3	99
317	The role of pe, pH, and carbonate on the solubility of UO2 and uraninite under nominally reducing conditions. <i>Geochimica Et Cosmochimica Acta</i> , 1998 , 62, 2223-2231	5.5	98

316	79Se: geochemical and crystallo-chemical retardation mechanisms. <i>Journal of Nuclear Materials</i> , 1999 , 275, 81-94	3.3	98
315	Energetics of radiation damage in natural zircon (ZrSiO4). <i>Physics and Chemistry of Minerals</i> , 1994 , 21, 140-149	1.6	90
314	The amorphization of complex silicates by ion-beam irradiation. <i>Journal of Materials Research</i> , 1992 , 7, 3080-3102	2.5	90
313	Radiation damage in zircon. American Mineralogist, 2003, 88, 770-781	2.9	89
312	Ceramic matrices for plutonium disposition. <i>Progress in Nuclear Energy</i> , 2007 , 49, 635-643	2.3	87
311	Uraninite and fullerene in atmospheric particulates. <i>Environmental Science & Environmental Science & </i>	10.3	87
310	Alpha-recoil damage in natural zirconolite (CaZrTi2O7). Journal of Nuclear Materials, 1983, 119, 102-109	9 3.3	86
309	Photoluminescence and photothermal effect of Fe3O4 nanoparticles for medical imaging and therapy. <i>Applied Physics Letters</i> , 2014 , 105, 091903	3.4	82
308	SbBellunder pressure. Scientific Reports, 2013, 3, 2665	4.9	78
307	Enhanced radiation resistance of nanocrystalline pyrochlore Gd2(Ti0.65Zr0.35)2O7. <i>Applied Physics Letters</i> , 2009 , 94, 243110	3.4	78
306	Nanoscale manipulation of the properties of solids at high pressure with relativistic heavy ions. <i>Nature Materials</i> , 2009 , 8, 793-7	27	77
305	O and Pb isotopic analyses of uranium minerals by ion microprobe and UPb ages from the Cigar Lake deposit. <i>Chemical Geology</i> , 2002 , 185, 205-225	4.2	77
304	Nanoscale phase transitions under extreme conditions within an ion track. <i>Journal of Materials Research</i> , 2010 , 25, 1344-1351	2.5	76
303	Thermal behavior of metal nanoparticles in geologic materials. <i>Geology</i> , 2006 , 34, 1033	5	75
302	Annealing of alpha-decay damage in zircon: a Raman spectroscopic study. <i>Journal of Physics Condensed Matter</i> , 2000 , 12, 3131-3148	1.8	75
301	The Gibbs free energies and enthalpies of formation of U6+ phases: An empirical method of prediction. <i>American Mineralogist</i> , 1999 , 84, 650-664	2.9	74
300	Geochemical alteration of pyrochlore group minerals; betafite subgroup. <i>American Mineralogist</i> , 1996 , 81, 1237-1248	2.9	74
299	The crystal structure of ianthinite, [U24+(UO2)4O6(OH)4(H2O)4](H2O)5: a possible phase for Pu4+ incorporation during the oxidation of spent nuclear fuel. <i>Journal of Nuclear Materials</i> , 1997 , 249, 199-20	ეჭ.3	73

298	Uraninite and UO2 in spent nuclear fuel: a comparison. <i>Journal of Nuclear Materials</i> , 1996 , 238, 121-130	3.3	73
297	Ion-beam irradiation of Gd2Sn2O7 and Gd2Hf2O7 pyrochlore: Bond-type effect. <i>Journal of Materials Research</i> , 2004 , 19, 1575-1580	2.5	72
296	Energy. Nuclear waste management in the United Statesstarting over. <i>Science</i> , 2009 , 325, 151-2	33.3	70
295	Caesium-rich micro-particles: A window into the meltdown events at the Fukushima Daiichi Nuclear Power Plant. <i>Scientific Reports</i> , 2017 , 7, 42731	4.9	66
294	A versatile multicomponent assembly via Eyclodextrin host-guest chemistry on graphene for biomedical applications. <i>Small</i> , 2013 , 9, 446-56	11	65
293	Redox response of actinide materials to highly ionizing radiation. <i>Nature Communications</i> , 2015 , 6, 6133	3 17.4	64
292	YUCCA MOUNTAIN: Earth-Science Issues at a Geologic Repository for High-Level Nuclear Waste. <i>Annual Review of Earth and Planetary Sciences</i> , 2004 , 32, 363-401	15.3	64
291	Groundwater nanoparticles in the far-field at the Nevada Test Site: mechanism for radionuclide transport. <i>Environmental Science & Environmental Scien</i>	10.3	61
290	The chemical stability of coffinite, USiO4[hH2O; 0 Chemical Geology, 2008 , 251, 33-49	4.2	60
289	High-level nuclear waste immobilization with ceramics. <i>Ceramics International</i> , 1991 , 17, 287-293	5.1	60
288	Low-temperature anisotropic diffusion of helium in zircon: Implications for zircon (UIIh)/He thermochronometry. <i>Geochimica Et Cosmochimica Acta</i> , 2007 , 71, 3119-3130	5.5	59
287	Chemical and structural characterization of As immobilization by nanoparticles of mackinawite (FeSm). <i>Chemical Geology</i> , 2009 , 268, 116-125	4.2	56
286	Mineral chemistry and oxygen isotopic analyses of uraninite, pitchblende and uranium alteration minerals from the Cigar Lake deposit, Saskatchewan, Canada. <i>Applied Geochemistry</i> , 1997 , 12, 549-565	3.5	56
285	Plutonium and Eninor Lactinides: safe sequestration. Earth and Planetary Science Letters, 2005, 229, 165-7	185.13	56
284	Thermodynamics of formation of coffinite, USiO4. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 6551-5	11.5	54
283	Phase Transformation of Nanosized ZrO2 upon Thermal Annealing and Intense Radiation. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 7193-7201	3.8	52
282	Magnetic alignment of carbon nanofibers in polymer composites and anisotropy of mechanical properties. <i>Journal of Applied Physics</i> , 2005 , 97, 064312	2.5	52
281	Image simulation of partially amorphous materials. <i>Ultramicroscopy</i> , 1993 , 48, 203-237	3.1	52

280	Nanoscale occurrence of Pb in an Archean zircon. <i>Geochimica Et Cosmochimica Acta</i> , 2004 , 68, 4679-46	86 5.5	50
279	Isotopic signature and nano-texture of cesium-rich micro-particles: Release of uranium and fission products from the Fukushima Daiichi Nuclear Power Plant. <i>Scientific Reports</i> , 2017 , 7, 5409	4.9	49
278	Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon. <i>Earth and Planetary Science Letters</i> , 2011 , 302, 227-235	5.3	49
277	Adsorbed U(VI) surface species on muscovite identified by laser fluorescence spectroscopy and transmission electron microscopy. <i>Environmental Science & Environmental Science</i>	10.3	49
276	Photothermal effect on Fe3O4 nanoparticles irradiated by white-light for energy-efficient window applications. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 161, 247-254	6.4	48
275	Similar local order in disordered fluorite and aperiodic pyrochlore structures. <i>Acta Materialia</i> , 2018 , 144, 60-67	8.4	48
274	Geological Disposal of Nuclear Waste: a Primer. <i>Elements</i> , 2016 , 12, 233-237	3.8	48
273	Uranium Dioxides and Debris Fragments Released to the Environment with Cesium-Rich Microparticles from the Fukushima Daiichi Nuclear Power Plant. <i>Environmental Science & Eamp; Technology</i> , 2018 , 52, 2586-2594	10.3	47
272	Unusual rigidity and ideal strength of CrB4 and MnB4. Applied Physics Letters, 2012, 100, 111907	3.4	47
271	Ion beam-induced amorphous-to-tetragonal phase transformation and grain growth of nanocrystalline zirconia. <i>Nanotechnology</i> , 2009 , 20, 245303	3.4	46
270	Radiation damage and alteration of zircon from a 3.3 Ga porphyritic granite from the Jack Hills, Western Australia. <i>Chemical Geology</i> , 2007 , 236, 92-111	4.2	46
269	Structural response of titanate pyrochlores to swift heavy ion irradiation. <i>Acta Materialia</i> , 2016 , 117, 207-215	8.4	46
268	Multilayered YSZ/GZO films with greatly enhanced ionic conduction for low temperature solid oxide fuel cells. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 1296-301	3.6	45
267	Near-field behavior of 99Tc during the oxidative alteration of spent nuclear fuel. <i>Journal of Nuclear Materials</i> , 2000 , 278, 225-232	3.3	45
266	A Critical Review of Existing Criteria for the Prediction of Pyrochlore Formation and Stability. <i>Inorganic Chemistry</i> , 2018 , 57, 12093-12105	5.1	45
265	Swift heavy ion track formation in Gd2Zr2IIi O7 pyrochlore: Effect of electronic energy loss. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2014 , 336, 102-115	1.2	44
264	Quantum mechanical vs. empirical potential modeling of uranium dioxide (UO2) surfaces: (111), (110), and (100). <i>American Mineralogist</i> , 2006 , 91, 1761-1772	2.9	44
263	The structure of aperiodic, metamict (Ca, Th)ZrTi2O7 (zirconolite): An EXAFS study of the Zr, Th, and U sites. <i>Journal of Materials Research</i> , 1993 , 8, 1983-1995	2.5	44

262	Amorphous structure of metamict minerals observed by TEM. <i>Nature</i> , 1981 , 293, 449-450	50.4	44	
261	Response of Gd2Ti2O7 and La2Ti2O7 to swift-heavy ion irradiation and annealing. <i>Acta Materialia</i> , 2015 , 93, 1-11	8.4	43	
260	Uranium reduction on magnetite: Probing for pentavalent uranium using electrochemical methods. <i>Geochimica Et Cosmochimica Acta</i> , 2015 , 156, 194-206	5.5	41	
259	First-principles study of electronic properties of La2Hf2O7 and Gd2Hf2O7. <i>Journal of Applied Physics</i> , 2007 , 102, 063704	2.5	40	
258	Zirconate pyrochlores under high pressure. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 12472-7	3.6	39	
257	The Oklobondo natural fission reactor, southeast Gabon: Geology, mineralogy, and retardation of nuclear-reaction products. <i>Bulletin of the Geological Society of America</i> , 2001 , 113, 32-62	3.9	39	
256	The energetics and kinetics of uranyl reduction on pyrite, hematite, and magnetite surfaces: A powder microelectrode study. <i>Geochimica Et Cosmochimica Acta</i> , 2013 , 118, 56-71	5.5	38	
255	Irradiation-induced stabilization of zircon (ZrSiO4) at high pressure. <i>Earth and Planetary Science Letters</i> , 2008 , 269, 291-295	5.3	38	
254	Role of composition, bond covalency, and short-range order in the disordering of stannate pyrochlores by swift heavy ion irradiation. <i>Physical Review B</i> , 2016 , 94,	3.3	37	
253	Bulk Iodoapatite Ceramic Densified by Spark Plasma Sintering with Exceptional Thermal Stability. Journal of the American Ceramic Society, 2014 , 97, 2409-2412	3.8	37	
252	Ion-irradiation-induced structural transitions in orthorhombic Ln2TiO5. Acta Materialia, 2013, 61, 4191-	4 82 ₁ 9	37	
251	A self-consistent model describing the thermodynamics of Eu(III) adsorption onto hematite. <i>Geochimica Et Cosmochimica Acta</i> , 2013 , 122, 430-447	5.5	37	
250	Nanoscale [Iquid[Inclusions of As-Fe-S in arsenian pyrite. American Mineralogist, 2009, 94, 391-394	2.9	37	
249	In situ TEM of radiation effects in complex ceramics. <i>Microscopy Research and Technique</i> , 2009 , 72, 165-	81 .8	37	
248	Quantum dot conjugated hydroxylapatite nanoparticles for in vivo imaging. <i>Nanotechnology</i> , 2008 , 19, 175102	3.4	37	
247	Theoretical investigation of structural, energetic and electronic properties of titanate pyrochlores. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 346203	1.8	37	
246	Description and classification of uranium oxide hydrate sheet anion topologies. <i>Journal of Materials Research</i> , 1996 , 11, 3048-3056	2.5	37	
245	Alteration of uranium minerals in the Koongarra deposit, Australia: Unweathered zone. <i>Journal of Nuclear Materials</i> , 1992 , 190, 174-187	3.3	37	

244	Structural response of A2TiO5 (A=La, Nd, Sm, Gd) to swift heavy ion irradiation. <i>Acta Materialia</i> , 2012 , 60, 4477-4486	8.4	36
243	Simultaneous formation of surface ripples and metallic nanodots induced by phase decomposition and focused ion beam patterning. <i>Applied Physics Letters</i> , 2006 , 88, 093112	3.4	36
242	Dissolution of radiation-damaged zircon in lateritic soils. <i>American Mineralogist</i> , 2007 , 92, 1978-1989	2.9	36
241	Defect accumulation in ThO2 irradiated with swift heavy ions. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2014 , 326, 169-173	1.2	35
240	Intrinsic Structural Disorder and Radiation Response of Nanocrystalline Gd2(Ti0.65Zr0.35)2O7 Pyrochlore. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 11810-11815	3.8	35
239	Structural and bonding properties of stannate pyrochlores: A density functional theory investigation. <i>Computational Materials Science</i> , 2008 , 42, 653-658	3.2	35
238	Novel Method of Quantifying Radioactive Cesium-Rich Microparticles (CsMPs) in the Environment from the Fukushima Daiichi Nuclear Power Plant. <i>Environmental Science & Environmental Science & Environ</i>	10.3	35
237	Fission tracks simulated by swift heavy ions at crustal pressures and temperatures. <i>Earth and Planetary Science Letters</i> , 2008 , 274, 355-358	5.3	34
236	Luminescent hydroxylapatite nanoparticles by surface functionalization. <i>Applied Physics Letters</i> , 2006 , 89, 183106	3.4	34
235	Size effects in the irradiation-induced crystalline-to-amorphous transformation. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2003 , 207, 28-35	1.2	34
234	Weathering of Natural Uranyl Oxide Hydrates: Schoepite Polytypes and Dehydration Effects. <i>Radiochimica Acta</i> , 1992 , 58-59, 433-444	1.9	34
233	Amorphization of nanocrystalline monoclinic ZrO2 by swift heavy ion irradiation. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 12295-300	3.6	33
232	Coffinite, USiO4, Is Abundant in Nature: So Why Is It So Difficult To Synthesize?. <i>Inorganic Chemistry</i> , 2015 , 54, 6687-96	5.1	32
231	Phase transformations in Ln2O3 materials irradiated with swift heavy ions. <i>Physical Review B</i> , 2015 , 92,	3.3	32
230	Time-response relationship of nano and micro particle induced lung inflammation. Quartz as reference compound. <i>Human and Experimental Toxicology</i> , 2010 , 29, 915-33	3.4	32
229	Crystal Chemical Constraints on the Formation of Actinide Pyrochlores. <i>Materials Research Society Symposia Proceedings</i> , 1984 , 44, 641		32
228	Thermal annealing of unetched fission tracks in apatite. <i>Earth and Planetary Science Letters</i> , 2012 , 321-322, 121-127	5.3	31
227	Nuclear Fuel Cycle: Environmental Impact. <i>MRS Bulletin</i> , 2008 , 33, 338-340	3.2	31

(2012-2005)

226	Ion-beam-induced amorphization and order-disorder transition in the murataite structure. <i>Journal of Applied Physics</i> , 2005 , 97, 113536	2.5	31
225	Environmental impact of the nuclear fuel cycle: Fate of actinides. MRS Bulletin, 2010, 35, 859-866	3.2	30
224	Radiation Effects in Crystalline Oxide Host Phases for the Immobilization of Actinides. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 713, 1		30
223	High-pressure behavior of A2B2O7 pyrochlore (A=Eu, Dy; B=Ti, Zr). <i>Journal of Applied Physics</i> , 2017 , 121, 045902	2.5	29
222	Inversion in MgNiAlO Spinel: New Insight into Local Structure. <i>Journal of the American Chemical Society</i> , 2017 , 139, 10395-10402	16.4	29
221	Size dependence of radiation-induced amorphization and recrystallization of synthetic nanostructured CePO4 monazite. <i>Acta Materialia</i> , 2013 , 61, 2984-2992	8.4	29
220	Energetic stability, structural transition, and thermodynamic properties of ZnSnO3. <i>Applied Physics Letters</i> , 2011 , 98, 091914	3.4	29
219	Energetics and concentration of defects in Gd2Ti2O7 and Gd2Zr2O7 pyrochlore at high pressure. <i>Acta Materialia</i> , 2011 , 59, 1607-1618	8.4	29
218	Uraninite recrystallization and Pb loss in the Oklo and Bangomb[hatural fission reactors, Gabon. <i>Geochimica Et Cosmochimica Acta</i> , 2005 , 69, 1589-1606	5.5	29
217	Defect accumulation in swift heavy ion-irradiated CeO2 and ThO2. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 12193-12201	13	28
216	First experimental determination of the solubility constant of coffinite. <i>Geochimica Et Cosmochimica Acta</i> , 2016 , 181, 36-53	5.5	28
215	Radioactive Cs in the Severely Contaminated Soils Near the Fukushima Daiichi Nuclear Power Plant. <i>Frontiers in Energy Research</i> , 2015 , 3,	3.8	28
214	Liquid-like phase formation in Gd2Zr2O7 by extremely ionizing irradiation. <i>Journal of Applied Physics</i> , 2009 , 105, 113510	2.5	28
213	Grain size effects on irradiated CeO2, ThO2, and UO2. <i>Acta Materialia</i> , 2018 , 160, 47-56	8.4	28
212	Average structure and local configuration of excess oxygen in UO(2+x). Scientific Reports, 2014, 4, 4216	4.9	27
211	Radioactive Cs in the estuary sediments near Fukushima Daiichi Nuclear Power Plant. <i>Science of the Total Environment</i> , 2016 , 551-552, 155-62	10.2	27
210	Characterization of ion-induced radiation effects in nuclear materials using synchrotron x-ray techniques. <i>Journal of Materials Research</i> , 2015 , 30, 1366-1379	2.5	27
209	Swift heavy ion-induced amorphization of CaZrO3 perovskite. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2012 , 286, 271-276	1.2	27

208	Fate of trace elements during alteration of uraninite in a hydrothermal vein-type U-deposit from Marshall Pass, Colorado, USA. <i>Geochimica Et Cosmochimica Acta</i> , 2007 , 71, 4954-4973	5.5	27	
207	Comparison of Ion-Beam Irradiation Effects in X2YO4 Compounds. <i>Journal of the American Ceramic Society</i> , 2004 , 82, 3321-3329	3.8	27	
206	Pressure-induced structural modifications of rare-earth hafnate pyrochlore. <i>Journal of Physics Condensed Matter</i> , 2017 , 29, 255401	1.8	26	
205	Swift heavy ion-induced phase transformation in Gd2O3. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2014 , 326, 121-125	1.2	26	
204	14. Radiation Effects in Zircon 2003 , 387-426		26	
203	Florencite-(La) with fissiogenic REEs from a natural fission reactor at Bangombe, Gabon. <i>American Mineralogist</i> , 1996 , 81, 1263-1269	2.9	26	
202	The fate of the epsilon phase (Mo-Ru-Pd-Tc-Rh) in the UO2 of the Oklo natural fission reactors. <i>Radiochimica Acta</i> , 2006 , 94, 749-753	1.9	25	
201	Nanoscale mineralogy of arsenic in a region of New Hampshire with elevated As-concentrations in the groundwater. <i>American Mineralogist</i> , 2003 , 88, 1844-1852	2.9	25	
200	Microscale characterization of uranium(VI) silicate solids and associated neptunium(V). <i>Radiochimica Acta</i> , 2005 , 93,	1.9	25	
199	Performance Assessments of Nuclear Waste Repositories: A Dialogue on Their Value and Limitations. <i>Risk Analysis</i> , 1999 , 19, 933-958	3.9	25	
198	Phosphatian coffinite with rare earth elements and Ce-rich franßisite-(Nd) from sandstone beneath a natural fission reactor at Bangomb[Gabon. <i>Mineralogical Magazine</i> , 1996 , 60, 665-669	1.7	25	
197	Alpha-recoil damage in titanite (CaTiSiO5): Direct observation and annealing study using high resolution transmission electron microscopy. <i>Journal of Materials Research</i> , 1991 , 6, 560-564	2.5	25	
196	Thermodynamic properties of ThxU1⊠O2 (0 Journal of Nuclear Materials, 2011 , 412, 13-21	3.3	24	
195	Nuclear proliferation: Time to bury plutonium. <i>Nature</i> , 2012 , 485, 167-8	50.4	24	
194	Actinide host phases as radioactive waste forms 2007 , 457-490		24	
193	Quantum-mechanical evaluation of Np-incorporation into studtite. <i>American Mineralogist</i> , 2010 , 95, 11.	512:1916	023	
192	Less Geology in the Geological Disposal of Nuclear Waste. <i>Science</i> , 1999 , 286, 415-417	33.3	23	
191	In situdefect annealing of swift heavy ion irradiated CeO2and ThO2using synchrotron X-ray diffraction and a hydrothermal diamond anvil cell. <i>Journal of Applied Crystallography</i> , 2015 , 48, 711-717	, 3.8	22	

190	Energetics of a Uranothorite (Th1NuxSiO4) Solid Solution. <i>Chemistry of Materials</i> , 2016 , 28, 7117-7124	9.6	22
189	Biomarkerless targeting and photothermal cancer cell killing by surface-electrically-charged superparamagnetic FeO composite nanoparticles. <i>Nanoscale</i> , 2017 , 9, 1457-1465	7.7	22
188	Radiation-stability of smectite. Environmental Science & Environmental Science	10.3	22
187	How does surface modification aid in the dispersion of carbon nanofibers?. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 23351-7	3.4	22
186	Alteration products of uraninite from the Colorado Plateau. <i>Radiochimica Acta</i> , 2000 , 88, 739-750	1.9	22
185	Oxidation of uraninite: Does tetragonal U3O7 occur in nature?. <i>Journal of Nuclear Materials</i> , 1993 , 207, 177-191	3.3	22
184	Natural Analogues: Their Application to the Prediction of the Long-Term Behavior of Nuclear Waste Forms. <i>Materials Research Society Symposia Proceedings</i> , 1986 , 84, 67		22
183	Tailoring the radiation tolerance of vanadatephosphate fluorapatites by chemical composition control. <i>RSC Advances</i> , 2013 , 3, 15178	3.7	21
182	Effects of ionizing radiation on the hollandite structure-type: Ba0.85Cs0.26Al1.35Fe0.77Ti5.90O16. American Mineralogist, 2008 , 93, 241-247	2.9	21
181	Effects of plasma surface modification on interfacial behaviors and mechanical properties of carbon nanotube-Al2O3 nanocomposites. <i>Applied Physics Letters</i> , 2007 , 91, 261903	3.4	21
180	U6+ phases in the weathering zone of the Bangomb[U-deposit: observed and predicted mineralogy. <i>Radiochimica Acta</i> , 2002 , 90, 761-769	1.9	21
179	Abundance and distribution of radioactive cesium-rich microparticles released from the Fukushima Daiichi Nuclear Power Plant into the environment. <i>Chemosphere</i> , 2020 , 241, 125019	8.4	21
178	Dissolution of radioactive, cesium-rich microparticles released from the Fukushima Daiichi Nuclear Power Plant in simulated lung fluid, pure-water, and seawater. <i>Chemosphere</i> , 2019 , 233, 633-644	8.4	20
177	Uranium diphosphonates templated by interlayer organic amines. <i>Journal of Solid State Chemistry</i> , 2013 , 198, 270-278	3.3	20
176	Nuclear waste. Yucca Mountain. <i>Science</i> , 2002 , 296, 659-60	33.3	20
175	Micro-structures associated with uraninite alteration. <i>Journal of Nuclear Materials</i> , 2000 , 277, 204-210	3.3	20
174	Three new silver uranyl diphosphonates: structures and properties. <i>Inorganic Chemistry</i> , 2014 , 53, 2787	- 96 1	19
173	Swift heavy ion irradiation-induced amorphization of La2Ti2O7. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2014 , 326, 145-149	1.2	19

Effect of orientation on ion track formation in apatite and zircon. American Mineralogist, 2014, 99, 1127-1:32 19 172 Np-incorporation into uranyl phases: A quantum Thechanical evaluation. Journal of Nuclear 171 19 3.3 Materials, 2013, 434, 440-450 Geochemical fixation of rare earth elements into secondary minerals in sandstones beneath a 170 5.5 19 natural fission reactor at Bangomb[JGabon. Geochimica Et Cosmochimica Acta, 2005, 69, 685-694 Infrared spectra of Si-O overtones, hydrous species, and U ions in metamict zircon: radiation 169 1.8 19 damage and recrystallization. Journal of Physics Condensed Matter, 2002, 14, 3333-3352 Accommodation of Uranium into the Garnet Structure. Materials Research Society Symposia 168 19 Proceedings, 2002, 713, 1 Electronic structure and stability of hyperstoichiometric UO2+x under pressure. Physical Review B, 18 167 3.3 2013, 88, Safe management of actinides in the nuclear fuel cycle: Role of mineralogy. Comptes Rendus -166 18 1.4 Geoscience, 2011, 343, 219-229 Porous fission fragment tracks in fluorapatite. Physical Review B, 2010, 82, 18 165 3.3 Irradiation of synthetic garnet by heavy ions and Edecay of 244Cm. Journal of Nuclear Materials, 164 18 3.3 **2010**, 407, 137-142 Distinguishing among schoepite, [(UO2)8O2(OH)12](H2O)12, and related minerals by X-ray powder 1.8 18 163 diffraction. Powder Diffraction, 1997, 12, 230-238 Particulate plutonium released from the Fukushima Daiichi meltdowns. Science of the Total 162 10.2 17 Environment, 2020, 743, 140539 Facile low temperature solid state synthesis of iodoapatite by high-energy ball milling. RSC 161 17 3.7 Advances, 2014, 4, 38718-38725 Multi-scale simulation of structural heterogeneity of swift-heavy ion tracks in complex oxides. 160 1.8 17 Journal of Physics Condensed Matter, 2013, 25, 135001 Characterization and dissolution behavior of a becquerelite from Shinkolobwe, Zaire. Geochimica Et 159 5.5 17 Cosmochimica Acta, 1997, 61, 3879-3884 Microstructural evolution and nanocrystal formation in Pb+-implanted ZrSiO4 single crystals. 158 2.5 17 Journal of Applied Physics, 2003, 94, 5695-5703 Cesium and Strontium Incorporation into Uranophane, Ca[(UO2)(SiO3OH)]2.5H2O. Journal of 157 17 Nuclear Science and Technology, 2002, 39, 504-507 The effect of H+ irradiationon the Cs-ion exchange capacity of zeolite-NaY. Journal of Materials 156 17 Chemistry, 2000, 10, 2610-2616 Disorder in HoTi Zr O: pyrochlore to defect fluorite solid solution series.. RSC Advances, 2020, 10, 34632-3.4650 17 155

(2012-2018)

154	Role of the X and n factors in ion-irradiation induced phase transformations of Mn+1AXn phases. <i>Acta Materialia</i> , 2018 , 144, 432-446	8.4	17
153	Strain engineered pyrochlore at high pressure. <i>Scientific Reports</i> , 2017 , 7, 2236	4.9	16
152	Displacive radiation-induced structural contraction in nanocrystalline ZrN. <i>Applied Physics Letters</i> , 2012 , 101, 041904	3.4	16
151	18. Phosphates as Nuclear Waste Forms 2002 , 673-700		16
150	Leachability of Zircon as a Function of Alpha Dose. <i>Materials Research Society Symposia Proceedings</i> , 1981 , 11, 389		16
149	He diffusion and closure temperatures in apatite and zircon: A density functional theory investigation. <i>Geochimica Et Cosmochimica Acta</i> , 2012 , 86, 228-238	5.5	15
148	Conjugation of quantum dots and Fe3O4 on carbon nanotubes for medical diagnosis and treatment. <i>Applied Physics Letters</i> , 2009 , 95, 223702	3.4	15
147	Oxidation state of uranium in metamict and annealed zircon: near-infrared spectroscopic quantitative analysis. <i>Journal of Physics Condensed Matter</i> , 2003 , 15, 3445-3470	1.8	15
146	Effect of doping on the radiation response of conductive NbBrTiO3. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2013 , 302, 40-47	1.2	14
145	Origin of the rigidity in tetragonal MB (M = Cr, Mo and W) and softening of defective WB: First-principles investigations. <i>Computational Materials Science</i> , 2012 , 53, 460-463	3.2	14
144	Micro-Raman and micro-infrared spectroscopic studies of Pb- and Au-irradiated ZrSiO4: Optical properties, structural damage, and amorphization. <i>Physical Review B</i> , 2008 , 77,	3.3	14
143	Predicting short-range order and correlated phenomena in disordered crystalline materials. <i>Science Advances</i> , 2020 , 6, eabc2758	14.3	14
142	Policy: Reassess New Mexico's nuclear-waste repository. <i>Nature</i> , 2016 , 529, 149-51	50.4	14
141	In situ TEM observation of alpha-particle induced annealing of radiation damage in Durango apatite. <i>Scientific Reports</i> , 2017 , 7, 14108	4.9	13
140	Disorder in MAX phases at the atomic scale. <i>Nature Communications</i> , 2019 , 10, 622	17.4	13
139	Radiation Stability of Spark-Plasma-Sintered Lead Vanadate Iodoapatite. <i>Journal of the American Ceramic Society</i> , 2015 , 98, 3361-3366	3.8	13
138	Barium uranyl diphosphonates. <i>Journal of Solid State Chemistry</i> , 2012 , 192, 153-160	3.3	13
137	Lead in zircon at the atomic scale. <i>American Mineralogist</i> , 2012 , 97, 1094-1102	2.9	13

136	Nanosized Rutile (TiO2) Thin Film upon Ion Irradiation and Thermal Annealing. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 22755-22760	3.8	13
135	Nuclear Waste Form Glasses: The Evaluation of Very Long-Term Behaviour. <i>Materials Technology</i> , 2001 , 16, 30-36	2.1	13
134	Performance assessments of nuclear waste repositories: a dialogue on their value and limitations. <i>Risk Analysis</i> , 1999 , 19, 933-58	3.9	13
133	Effects of irradiation temperature on the response of CeO2, ThO2, and UO2 to highly ionizing radiation. <i>Journal of Nuclear Materials</i> , 2019 , 525, 83-91	3.3	12
132	Carbonate orientational order and superlattice structure in vaterite. <i>Journal of Crystal Growth</i> , 2014 , 407, 78-86	1.6	12
131	Stability of uranium (VI) peroxide hydrates under ionizing radiation. <i>American Mineralogist</i> , 2009 , 94, 229-235	2.9	12
130	Self-assembly of well-aligned 3C-SiC ripples by focused ion beam. <i>Applied Physics Letters</i> , 2008 , 92, 193	1974	12
129	Radiation-induced decomposition of U(VI) phases to nanocrystals of UO2. <i>Earth and Planetary Science Letters</i> , 2005 , 240, 521-528	5.3	12
128	Plasma deposition of thin carbonfluorine films on aligned carbon nanotube. <i>Applied Physics Letters</i> , 2005 , 86, 043107	3.4	12
127	The thermal stability and consolidation of perovskite variant Cs2SnCl6 using spark plasma sintering. Journal of the American Ceramic Society, 2018 , 101, 2060-2065	3.8	12
126	Amorphization of Ta2O5 under swift heavy ion irradiation. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2017 , 407, 25-33	1.2	11
125	Role of vein-phases in nanoscale sequestration of U, Nb, Ti, and Pb during the alteration of pyrochlore. <i>Geochimica Et Cosmochimica Acta</i> , 2015 , 150, 226-252	5.5	11
124	Thermal annealing of natural, radiation-damaged pyrochlore. <i>Zeitschrift Fur Kristallographie - Crystalline Materials</i> , 2017 , 232, 25-38	1	11
123	Formation of nanoscale Th-coffinite. American Mineralogist, 2012, 97, 681-693	2.9	11
122	Crystal chemistry and radiation-induced amorphization of P-coffinite from the natural fission reactor at Bangomb[]Gabon. <i>American Mineralogist</i> , 2009 , 94, 827-837	2.9	11
121	12. Radiation-Induced Amorphization 2000 , 319-362		11
120	Local order of orthorhombic weberite-type Y3TaO7 as determined by neutron total scattering and density functional theory calculations?. <i>Acta Materialia</i> , 2020 , 196, 704-709	8.4	11
119	Ultrafast laser and swift heavy ion irradiation: Response of Gd2O3 and ZrO2 to intense electronic excitation. <i>Applied Physics Letters</i> , 2015 , 106, 171914	3.4	10

118	Review of recent experimental results on the behavior of actinide-bearing oxides and related materials in extreme environments. <i>Progress in Nuclear Energy</i> , 2018 , 104, 342-358	2.3	10
117	Precipitation and alteration of coffinite (USiO4nH2O) in the presence of apatite. <i>European Journal of Mineralogy</i> , 2010 , 22, 75-88	2.2	10
116	Enhanced thermal stability of carbon nanotubes by plasma surface modification in Al2O3 composites. <i>Journal of Applied Physics</i> , 2008 , 104, 074302	2.5	10
115	Anisotropic mechanical properties of zircon and the effect of radiation damage. <i>Physics and Chemistry of Minerals</i> , 2016 , 43, 627-638	1.6	10
114	Phase transformations of Al-bearing high-entropy alloys AlxCoCrFeNi (x = 0, 0.1, 0.3, 0.75, 1.5) at high pressure. <i>Applied Physics Letters</i> , 2019 , 114, 091902	3.4	9
113	Facile diamond synthesis from lower diamondoids. Science Advances, 2020, 6, eaay9405	14.3	9
112	Mechanical properties of natural radiation-damaged titanite and temperature-induced structural reorganization: A nanoindentation and Raman spectroscopic study. <i>American Mineralogist</i> , 2016 , 101, 399-406	2.9	9
111	Molten salts activated by high-energy milling: A useful, low-temperature route for the synthesis of multiferroic compounds. <i>Journal of Alloys and Compounds</i> , 2014 , 584, 93-100	5.7	9
110	Dipole-interaction mediated hyperthermia heating mechanism of nanostructured Fe3O4 composites. <i>Materials Letters</i> , 2014 , 129, 57-60	3.3	9
109	First principles investigation of structural, electronic, elastic and thermal properties of rare-earth-doped titanate Ln2TiO5. <i>AIP Advances</i> , 2012 , 2, 032114	1.5	9
108	The effect of ionizing radiation on uranophane. American Mineralogist, 2003, 88, 159-166	2.9	9
107	Anisotropic expansion and amorphization of Ga2O3 irradiated with 946 MeV Au ions. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2016 , 374, 40-44	1.2	8
106	C60 and Uion irradiation of Gd2TixZr2[kO7 pyrochlore. <i>Journal of Materials Research</i> , 2015 , 30, 2456-24	66 .5	8
105	Pressure-induced splitting and buckling of Cu-O chains in the low-dimensional structure of SrCuO2. Journal of the American Chemical Society, 2007 , 129, 13923-6	16.4	8
104	Oxygen isotopic composition of nano-scale uraninite at the Oklo-Oklobondo natural fission reactors, Gabon. <i>American Mineralogist</i> , 2003 , 88, 1583-1590	2.9	8
103	Colloid Transport of Radionuclides: Yucca Mountain Performance Assessment. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 807, 206		8
102	Is a Probabilistic Performance Assessment Enough?. <i>Ground Water</i> , 1999 , 37, 481-482	2.4	8
101	Formation of Secondary Uranium Minerals in the Koongarra Deposit, Australia. <i>Materials Research Society Symposia Proceedings</i> , 1993 , 333, 653		8

100	Natural Pyrochlores: Analogues For Actinide Host Phases in Radioactive Waste Forms. <i>Materials Research Society Symposia Proceedings</i> , 1984 , 44, 647		8
99	Coffinite formation from UO. <i>Scientific Reports</i> , 2020 , 10, 12168	4.9	8
98	Mission Impossible? Socio-Technical Integration of Nuclear Waste Geological Disposal Systems. <i>Sustainability</i> , 2018 , 10, 4390	3.6	8
97	Structure and bulk modulus of Ln-doped UO2 (Ln´= La, Nd) at high pressure. <i>Journal of Nuclear Materials</i> , 2017 , 490, 28-33	3.3	7
96	Measurement of UO2 surface oxidation using grazing-incidence x-ray diffraction: Implications for nuclear forensics. <i>Journal of Nuclear Materials</i> , 2018 , 502, 68-75	3.3	7
95	Radiation-induced disorder in compressed lanthanide zirconates. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 6187-6197	3.6	7
94	Combined high pressure and heavy-ion irradiation: a novel approach. <i>Journal of Synchrotron Radiation</i> , 2009 , 16, 773-7	2.4	7
93	Freshwater Alteration of Basaltic Glass, Hanauma Bay, Oahu, Hawaii: A Natural Analogue for the Alteration of Borosilicate Glass in Fresh Water. <i>Materials Research Society Symposia Proceedings</i> , 1988 , 127, 49		7
92	Solution-Gelation Method for Preparing Polycrystalline Zircon. <i>Journal of the American Ceramic Society</i> , 1981 , 64, C-149-C-149	3.8	7
91	Radiation-damage-induced transitions in zircon: Percolation theory applied to hardness and elastic moduli as a function of density. <i>Applied Physics Letters</i> , 2018 , 112, 201901	3.4	7
90	Thermal defect annealing of swift heavy ion irradiated ThO2. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2017 , 405, 15-21	1.2	6
89	Ion-beam irradiation and 244Cm-doping investigations of the radiation response of actinide-bearing crystalline waste forms. <i>Journal of Materials Research</i> , 2015 , 30, 1516-1528	2.5	6
88	Swift-heavy ion irradiation response and annealing behavior of A2TiO5 (A = Nd, Gd, and Yb). <i>Journal of Solid State Chemistry</i> , 2018 , 258, 108-116	3.3	6
87	ZrSi formation at ZrN/Si interface induced by ballistic and ionizing radiations. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2012 , 286, 266-270	1.2	6
86	Pb+ irradiation of synthetic zircon (ZrSiO4): Infrared spectroscopic investigation. <i>American Mineralogist</i> , 2008 , 93, 1418-1423	2.9	6
85	The effects of radiation on the retention of strontium in zeolite-NaSrY. <i>Journal of Materials Chemistry</i> , 2002 , 12, 233-238		6
84	Comparison of Surface Layers Formed on Synthetic Basaltic Glass, French R7T7 and HMI Borosilicate Nuclear Waste form Glasses - Materials Interface Interactions Tests, Waste Isolation Pilot Plant. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 176, 355		6
83	Thermodynamics of CeSiO: Implications for Actinide Orthosilicates. <i>Inorganic Chemistry</i> , 2020 , 59, 131	74 5 1∄18	336

82	Ion-irradiation-induced structural evolution in Ti4AlN3. Scripta Materialia, 2017, 133, 19-23	5.6	5
81	Mechanical and structural properties of radiation-damaged allanite-(Ce) and the effects of thermal annealing. <i>Physics and Chemistry of Minerals</i> , 2019 , 46, 921-933	1.6	5
80	ATiO (A = Dy, Gd, Er, Yb) at High Pressure. <i>Inorganic Chemistry</i> , 2018 , 57, 2269-2277	5.1	5
79	Uranyl peroxide nanoclusters at high-pressure. <i>Journal of Materials Research</i> , 2017 , 32, 3679-3688	2.5	5
78	Lanthanide stannate pyrochlores (LnSnO; Ln = Nd, Gd, Er) at high pressure. <i>Journal of Physics Condensed Matter</i> , 2017 , 29, 504005	1.8	5
77	Defect formation energy in pyrochlore: the effect of crystal size. <i>Materials Research Express</i> , 2014 , 1, 035501	1.7	5
76	Controlling the structure and size of Au nanocrystals by annealing and ion sputtering. <i>Langmuir</i> , 2012 , 28, 51-5	4	5
75	Hydrogen incorporation in crystalline zircon: Insight from ab initio calculations. <i>American Mineralogist</i> , 2013 , 98, 745-751	2.9	5
74	Is nuclear fission a sustainable source of energy?. MRS Bulletin, 2012, 37, 417-424	3.2	5
73	Horizontally aligned Cu5Si polycrystalline nanorods on Si. <i>Applied Physics Letters</i> , 2008 , 92, 253113	3.4	5
72	Trace element immobilization by uranyl minerals in granite-hosted uranium ores: Evidences from the Xiazhuang ore field of Guangdong province, China. <i>Radiochimica Acta</i> , 2007 , 95, 25-32	1.9	5
71	Zirconolites from Sri Lanka, South Africa and Brazil. <i>Materials Research Society Symposia Proceedings</i> , 1981 , 6, 249		5
70	New highly radioactive particles derived from Fukushima Daiichi Reactor Unit 1: Properties and environmental impacts. <i>Science of the Total Environment</i> , 2021 , 773, 145639	10.2	5
69	The Role of Water and Hydroxyl Groups in the Structures of Stetindite and Coffinite, MSiO (M = Ce, U). <i>Inorganic Chemistry</i> , 2021 , 60, 718-735	5.1	5
68	OH species, U ions, and CO/CO2 in thermally annealed metamict zircon (ZrSiO4). <i>American Mineralogist</i> , 2010 , 95, 1717-1724	2.9	4
67	Source-to-receptor pathways of anthropogenic PM2.5 in Detroit, Michigan: Comparison of two inhalation exposure studies. <i>Atmospheric Environment</i> , 2009 , 43, 1805-1813	5.3	4
66	Radiation-induced decomposition of U(VI) alteration phases of UO2. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 932, 1		4
65	Environmental impact of the nuclear fuel cycle. <i>Geological Society Special Publication</i> , 2004 , 236, 7-23	1.7	4

64	Radiation effects in Mn+1AXn phases. <i>Applied Physics Reviews</i> , 2020 , 7, 041311	17.3	4
63	Radiation-damage in multi-layered zircon: Mechanical properties. <i>Applied Physics Letters</i> , 2019 , 115, 081	1302	3
62	Thermodynamic mixing properties of the UO2HfO2 solid solution: Density functional theory and Monte Carlo simulations. <i>Journal of Nuclear Materials</i> , 2015 , 458, 296-303	3.3	3
61	Scanning Transmission Electron Microscopy and Related Techniques for Research on Actinide and Radionuclide Nanomaterials 2011 , 33-62		3
60	Ion-Induced Amorphization of Murataite. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 713, 1		3
59	The Long-Term Performance of Nuclear Waste Forms: Natural Materials - Three Case Studies. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 294, 559		3
58	Long-Term Release from High Level Waste Glass - Part IV: The Effect of Leaching Mechanism. <i>Materials Research Society Symposia Proceedings</i> , 1984 , 44, 99		3
57	Metamiet columbite re-examined. <i>Mineralogical Magazine</i> , 1976 , 40, 898-899	1.7	3
56	Constraints on Hf and Zr mobility in high-sulfidation epithermal systems: formation of kosnarite, KZr2(PO4)3, in the Chaquicocha gold deposit, Yanacocha district, Peru. <i>Mineralium Deposita</i> , 2015 , 50, 429-436	4.8	2
55	Annealing of ion tracks in apatite under pressure characterized in situ by small angle x-ray scattering. <i>Scientific Reports</i> , 2020 , 10, 1367	4.9	2
54	Initial stages of ion beam-induced phase transformations in Gd2O3 and Lu2O3. <i>Applied Physics Letters</i> , 2018 , 112, 073904	3.4	2
53	Phase transformation pathways of ultrafast-laser-irradiated Ln2O3(Ln=Er[lu). <i>Physical Review B</i> , 2018 , 97,	3.3	2
52	Synchrotron x-ray diffraction analysis of gadolinium and lanthanum titanate oxides irradiated by xenon and tantalum swift heavy ions. <i>Materials Research Society Symposia Proceedings</i> , 2015 , 1743, 26		2
51	Nuclear-waste management and disposal178-193		2
50	Electronic structure and energetics of tetragonal SrCuOland its high-pressure superstructure phase. <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 465503	1.8	2
49	Ion Beam Irradiation-induced Amorphization in Nano-sized KxLnyTa2O7-v Tantalate Pyrochlore. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1298, 147		2
48	Thermodynamic Properties of Actinide Oxide Solid Solutions. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1125, 1		2
47	Ion Irradiation Effects in Synthetic Garnets Incorporating Actinides. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 713, 1		2

46	In Situ Isotopic Analysis of Uraninite Microstructures from the Oklo-Oklobondo Natural Fission Reactors, Gabon. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 713, 1		2
45	Heavy Ion Irradiation of Brannerite-type Ceramics. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 650, 3171		2
44	Radiation and Thermal Effects in Zeolite-NaY. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 608, 493		2
43	The Crystal Structure of Ianthinite, a Mixed-Valence Uranium Oxide Hydrate. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 465, 1193		2
42	Evolution and Structure of the Scientific Basis for Nuclear Waste Management. <i>MRS Advances</i> , 2019 , 4, 959-964	0.7	2
41	Radiation-induced effects on the mechanical properties of natural ZrSiO4: double cascade-overlap damage accumulation. <i>Physics and Chemistry of Minerals</i> , 2018 , 45, 435-442	1.6	2
40	Socio-technical multi-criteria evaluation of long-term spent nuclear fuel management strategies: A framework and method. <i>Science of the Total Environment</i> , 2021 , 777, 146086	10.2	2
39	The Concept of Geological Disposal of Highly Radioactive Nuclear Waste 2021 , 588-602		2
38	Integration of the Back-end of the Nuclear Fuel Cycle: An Overview. MRS Advances, 2020, 5, 253-264	0.7	1
37	Ion Beam Irradiation-Induced Amorphization of Nano-Sized KxLnyTa2O7-v Tantalate Pyrochlore. <i>Frontiers in Energy Research</i> , 2014 , 2,	3.8	1
36	Swift heavy ion irradiation of diamond powder. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2012 , 286, 262-265	1.2	1
35	Effect of interstitial atoms on the stability and electronic structure of Re3Zn alloy: First-principles calculations. <i>Intermetallics</i> , 2012 , 24, 95-98	3.5	1
34	Np-Incorporation Into K-boltwoodite. Materials Research Society Symposia Proceedings, 2008, 1107, 1		1
33	Performance Assessments of Geologic Repositories for High-Level Nuclear Waste: Are they Necessary or Sufficient?. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 824, 137		1
32	79Se: Geochemical and Crystallo-Chemical Retardation Mechanisms. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 556, 1115		1
31	Annealing of Alpha-Recoil Damage in Natural Titanite, CaTiSiO5 <i>Materials Research Society Symposia Proceedings</i> , 1990 , 183, 297		1
30	Application of Electron Microscopy to Understanding Colloid-Facilitated Transport of Radionuclides at the Mayak Production Association Facility, Near Lake Karachai, Russia 2020 , 177-200		1
29	Alpha-decay induced shortening of fission tracks simulated by in situ ion irradiation. <i>Geochimica Et Cosmochimica Acta</i> , 2021 , 299, 1-14	5.5	1

28	Recent advances in the global rare-earth supply chain. MRS Bulletin,	3.2	1
27	Nanocrystallites via Direct Melt Spinning of Fe77Ni5.5Co5.5Zr7B4Cu for Enhanced Magnetic Softness. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2020 , 217, 1900680	1.6	0
26	Processing of Soft Magnetic Fine Powders Directly From As-Spun Partial Crystalline Fe77Ni5.5Co5.5Zr7B4Cu Ribbon via Ball Mill Without Devitrification. <i>IEEE Transactions on Magnetics</i> , 2020 , 56, 1-9	2	0
25	Swift Heavy Ion-Induced Decomposition and Phase Transformation in Nanocrystalline SnO2. <i>Materials Research Society Symposia Proceedings</i> , 2014 , 1715, 13		O
24	Volatilization of BC control rods in Fukushima Daiichi nuclear reactors during meltdown: B-Li isotopic signatures in cesium-rich microparticles <i>Journal of Hazardous Materials</i> , 2022 , 428, 128214	12.8	0
23	Geologic Analysis of the Democratic People Republic of Korea Uranium Resources and Mines. <i>Science and Global Security</i> , 2020 , 28, 80-109	0.1	O
22	Phase stability of pre-irradiated CeO 2 with swift heavy ions under high pressure up to 45 GPa. Journal of the American Ceramic Society, 2022 , 105, 2889-2902	3.8	0
21	Probabilistic Performance Assessment vs. the Safety Case Approach. MRS Advances, 2019 , 4, 987-992	0.7	
20	Structural evolution of Lu2-xCexTi2O7 pyrochlores under 400 keV Ne irradiation. <i>Journal of the American Ceramic Society</i> , 2020 , 103, 5525-5535	3.8	
19	Acceptance of Distinguished Public Service Award of the Mineralogical Society of America for 2019. American Mineralogist, 2020 , 105, 774-775	2.9	
18	Acceptance of the 2015 Roebling Medal of the Mineralogical Society of America. <i>American Mineralogist</i> , 2016 , 101, 1002-1004	2.9	
17	Phase transformation and chemical decomposition of nanocrystalline SnO2 under heavy ion irradiation. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2017 , 407, 10-19	1.2	
16	Presentation of the Distinguished Public Service Award for 2013 of the Mineralogical Society of America to Pierrette Tremblay. <i>American Mineralogist</i> , 2014 , 99, 1185-1185	2.9	
15	New Actinide Waste Forms with Pyrochlore and Garnet Structures. <i>Advances in Science and Technology</i> , 2010 , 73, 142-147	0.1	
14	In situ AFM and XPS Investigation of U6+ Reduction by Fe2+ on Hematite and Pyrite. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1444, 243		
13	Magnetic Alignment of Carbon Nanofibers in Polymer Composites. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 858, 248		
12	Nanoscale Heavy Metal Phases on Atmospheric and Groundwater Colloids. <i>ACS Symposium Series</i> , 2004 , 97-101	0.4	
11	Materials Research in Nuclear Waste Management: Reflections on Twenty-Five MRS Symposia. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 713, 1		

LIST OF PUBLICATIONS

10	Symposia Proceedings, 2002 , 713, 1	
9	Effect of Iodine and Strontium Ion Implantation on the Microstructure of Cubic Zirconia. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 647, 1	
8	Effects of Proton Irradiation in Zeolite-Y. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 650, 3161	
7	Structural Contributions to the Third-Law Entropy of Uranyl Phases. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 556, 1017	
6	Radiation Effects Issues Related to U.S. Doe Site Remediation and Nuclear Waste Storage. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 353, 1389	
5	The Alteration of Uraninite to Clarkeite. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 294, 513	
4	Machine learning improves satellite imagery analysis of North Korean nuclear activity. <i>Bulletin of the Atomic Scientists</i> , 2022 , 78, 26-37	1.6
3	Assessing Uranium Ore Processing Activities Using Satellite Imagery at Pyongsan in the Democratic People Republic of Korea. <i>Science and Global Security</i> ,1-34	0.1
2	Environmental Electron Microscopy Imaging1390-1399	
1	Fracture toughness of radiation-damaged zircon studied by nanoindentation pillar-splitting. <i>Applied Physics Letters</i> , 2021 , 119, 231903	3.4