
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2141805/publications.pdf Version: 2024-02-01

SONG CHOWEN

#	Article	IF	CITATIONS
1	Effects of clothing size and air ventilation rate on cooling performance of air ventilation clothing in a warm condition. International Journal of Occupational Safety and Ergonomics, 2022, 28, 354-363.	1.9	29
2	Modeling of hot water and steam protective performance of fabrics used in Firefighters' clothing. Fire and Materials, 2022, 46, 463-475.	2.0	3
3	Characterizing the Tensile Strength of the Fabrics Used in Firefighters' Bunker Gear under Radiant Heat Exposure. Polymers, 2022, 14, 296.	4.5	7
4	Characterizing Steam Penetration through Thermal Protective Fabric Materials. Textiles, 2022, 2, 16-28.	4.1	0
5	Numerical study of the convective heat transfer coefficient of the hand and the effect of wind. Building and Environment, 2021, 188, 107482.	6.9	18
6	Effects of microencapsulated phase change materials on the thermal behavior of multilayer thermal protective clothing. Journal of the Textile Institute, 2021, 112, 1004-1013.	1.9	9
7	Characterization and empirical analysis of hot water immersion with compression protective performance of fabrics used in firefighters' clothing. Textile Reseach Journal, 2021, 91, 508-522.	2.2	0
8	Characterization and Modeling of Thermal Protective and Thermo-Physiological Comfort Performance of Polymeric Textile Materials—A Review. Materials, 2021, 14, 2397.	2.9	12
9	Using Artificial Neural Network Modeling to Analyze the Thermal Protective and Thermo-Physiological Comfort Performance of Textile Fabrics Used in Oilfield Workers' Clothing. International Journal of Environmental Research and Public Health, 2021, 18, 6991.	2.6	9
10	A 3D multi-segment thermoregulation model of the hand with realistic anatomy: Development, validation, and parametric analysis. Building and Environment, 2021, 201, 107964.	6.9	14
11	What We Are Learning from COVID-19 for Respiratory Protection: Contemporary and Emerging Issues. Polymers, 2021, 13, 4165.	4.5	5
12	Effect of Compression on Contact Heat Transfer in Thermal Protective Clothing Under Different Moisture Contents. Clothing and Textiles Research Journal, 2020, 38, 19-31.	3.4	2
13	Fabrics for heat and flame protection. , 2019, , 265-299.		0
14	Effect of compression on thermal protection of firefighting protective clothing under flame exposure. Fire and Materials, 2019, 43, 802-810.	2.0	11
15	Influence of Transport Properties of Laminated Membrane-fabric on Thermal Protective Performance Against Steam Hazard. Fibers and Polymers, 2019, 20, 2433-2442.	2.1	9
16	Developing a test device to analyze heat transfer through firefighter protective clothing. International Journal of Thermal Sciences, 2019, 138, 1-11.	4.9	14
17	Development of a numerical model to predict physiological strain of firefighter in fire hazard. Scientific Reports, 2018, 8, 3628.	3.3	2
18	Modeling steam heat transfer in thermal protective clothing under hot steam exposure. International Journal of Heat and Mass Transfer, 2018, 120, 818-829.	4.8	24

#	Article	IF	CITATIONS
19	Characterizing thermal protective fabrics of firefighters' clothing in hot surface contact. Journal of Industrial Textiles, 2018, 47, 622-639.	2.4	19
20	Assessment of thermal comfort of nanosilver-treated functional sportswear fabrics using a dynamic thermal model with human/clothing/environmental factors. Textile Reseach Journal, 2018, 88, 413-425.	2.2	9
21	The effect of moisture content within multilayer protective clothing on protection from radiation and steam. International Journal of Occupational Safety and Ergonomics, 2018, 24, 190-199.	1.9	18
22	The effects of moisture on the thermal protective performance of firefighter protective clothing under medium intensity radiant exposure. Textile Reseach Journal, 2018, 88, 847-862.	2.2	13
23	Effect of moisture content on thermal protective performance of fabric assemblies by a stored energy approach under flash exposure. Textile Reseach Journal, 2018, 88, 1847-1861.	2.2	16
24	Integrating a human thermoregulatory model with a clothing model to predict core and skin temperatures. Applied Ergonomics, 2017, 61, 168-177.	3.1	23
25	An exploration of enhancing thermal protective clothing performance by incorporating aerogel and phase change materials. Fire and Materials, 2017, 41, 953-963.	2.0	28
26	Assessing the performance of a conceptual tight-fitting body mapping sportswear (BMS) kit in a warm dry environment. Fibers and Polymers, 2016, 17, 151-159.	2.1	8
27	Effect of sweating set rate on clothing real evaporative resistance determined on a sweating thermal manikin in a so-called isothermal condition (T manikin = T a = T r). International Journal of Biometeorology, 2016, 60, 481-488.	3.0	21
28	A novel protocol to characterize the thermal protective performance of fabrics in hot-water exposure. Journal of Industrial Textiles, 2016, 46, 279-291.	2.4	21
29	Effects of moisture content and clothing fit on clothing apparent â€~wet' thermal insulation: A thermal manikin study. Textile Reseach Journal, 2016, 86, 57-63.	2.2	44
30	Characterizing Fabrics in Firefighters' Protective Clothing: Hot Water Immersion with Compression. AATCC Journal of Research, 2016, 3, 8-15.	0.6	8
31	A novel personal cooling system (PCS) incorporated with phase change materials (PCMs) and ventilation fans: An investigation on its cooling efficiency. Journal of Thermal Biology, 2015, 52, 137-146.	2.5	72
32	Clothing resultant thermal insulation determined on a movable thermal manikin. Part I: effects of wind and body movement on total insulation. International Journal of Biometeorology, 2015, 59, 1475-1486.	3.0	47
33	Clothing resultant thermal insulation determined on a movable thermal manikin. Part II: effects of wind and body movement on local insulation. International Journal of Biometeorology, 2015, 59, 1487-1498.	3.0	47
34	The impact of air gap on thermal performance of protective clothing against hot water spray. Textile Reseach Journal, 2015, 85, 709-721.	2.2	14
35	Thermal sensors for performance evaluation of protective clothing against heat and fire: a review. Textile Reseach Journal, 2015, 85, 101-112.	2.2	55
36	Characterizing factors affecting the hot liquid penetration performance of fabrics for protective clothing. Textile Reseach Journal, 2014, 84, 174-186.	2.2	16

#	Article	IF	CITATIONS
37	Characterization of Thermal Protective Clothing under Hot Water and Pressurized Steam Exposure. AATCC Journal of Research, 2014, 1, 7-16.	0.6	19
38	Performance Study of Protective Clothing against Hot Water Splashes: from Bench Scale Test to Instrumented Manikin Test. Annals of Occupational Hygiene, 2014, 59, 232-42.	1.9	11
39	A novel approach for fit analysis of thermal protective clothing using three-dimensional body scanning. Applied Ergonomics, 2014, 45, 1439-1446.	3.1	48
40	An Empirical Analysis of Thermal Protective Performance of Fabrics Used in Protective Clothing. Annals of Occupational Hygiene, 2014, 58, 1065-77.	1.9	18
41	Performance of immersion suits: A literature review. Journal of Industrial Textiles, 2014, 44, 288-306.	2.4	24
42	A new protocol to characterize thermal protective performance of fabrics against hot liquid splash. Experimental Thermal and Fluid Science, 2013, 46, 37-45.	2.7	35
43	Analysing Performance of Protective Clothing upon Hot Liquid Exposure Using Instrumented Spray Manikin. Annals of Occupational Hygiene, 2013, 57, 793-804.	1.9	19
44	Laboratory Evaluation of Thermal Protective Clothing Performance Upon Hot Liquid Splash. Annals of Occupational Hygiene, 2013, 57, 805-22.	1.9	10
45	Characterization of textile fabrics under various thermal exposures. Textile Reseach Journal, 2013, 83, 1005-1019.	2.2	87
46	The effect of air gaps in moist protective clothing on protection from heat and flame. Journal of Fire Sciences, 2013, 31, 99-111.	2.0	51
47	Effect of an air gap on the heat transfer of protective materials upon hot liquid splashes. Textile Reseach Journal, 2013, 83, 1156-1169.	2.2	17
48	Analysis of Physical and Thermal Comfort Properties of Chemical Protective Clothing. , 2012, , 48-73.		1
49	Analysis of Physical and Thermal Comfort Properties of Chemical Protective Clothing. , 2012, , 1-26.		0
50	An investigation of the assessment of fabric drape using three-dimensional body scanning. Journal of the Textile Institute, 2010, 101, 324-335.	1.9	14
51	Heat transfer in a cylinder sheathed by flame-resistant fabrics exposed to convective and radiant heat flux. Fire Safety Journal, 2008, 43, 401-409.	3.1	33
52	Numerical Simulations of Heat and Moisture Transport in Thermal Protective Clothing Under Flash Fire Conditions. International Journal of Occupational Safety and Ergonomics, 2008, 14, 89-106.	1.9	86
53	Clothing Air Gap Layers and Thermal Protective Performance in Single Layer Garment. Journal of Industrial Textiles, 2007, 36, 193-205.	2.4	157
54	Thermal Performance Assessment of Heat Resistant Fabrics Based on a New Thermal Wave Model of Skin Heat Transfer. International Journal of Occupational Safety and Ergonomics, 2006, 12, 43-51.	1.9	9

#	Article	IF	CITATIONS
55	Modeling the Thermal Protective Performance of Heat Resistant Garments in Flash Fire Exposures. Textile Reseach Journal, 2004, 74, 1033-1040.	2.2	94
56	The effect of moisture and air gap on the thermal protective performance of fabric assemblies used by wildland firefighters. Journal of the Textile Institute, 0, , 1-7.	1.9	6
57	Characterization and modeling of thermal protective fabrics under Molotov cocktail exposure. Journal of Industrial Textiles, 0, , 152808372098497.	2.4	2