Lili Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/21418/publications.pdf

Version: 2024-02-01

159358 123241 4,069 65 30 61 h-index citations g-index papers 68 68 68 4599 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Loss of Klotho Contributes to Kidney Injury by Derepression of Wnt∫l²-Catenin Signaling. Journal of the American Society of Nephrology: JASN, 2013, 24, 771-785.	3.0	309
2	Activation of \hat{I}^2 -Catenin and Yap1 in Human Hepatoblastoma and Induction of Hepatocarcinogenesis in Mice. Gastroenterology, 2014, 147, 690-701.	0.6	249
3	Wnt/ \hat{l}^2 -catenin signaling and kidney fibrosis. Kidney International Supplements, 2014, 4, 84-90.	4.6	221
4	Sustained Activation of Wnt/ \hat{l}^2 -Catenin Signaling Drives AKI to CKD Progression. Journal of the American Society of Nephrology: JASN, 2016, 27, 1727-1740.	3.0	189
5	Multiple Genes of the Renin-Angiotensin System Are Novel Targets of Wnt/β-Catenin Signaling. Journal of the American Society of Nephrology: JASN, 2015, 26, 107-120.	3.0	184
6	Tubule-specific ablation of endogenous \hat{l}^2 -catenin aggravates acute kidney injury in mice. Kidney International, 2012, 82, 537-547.	2.6	181
7	Wnt/ \hat{l}^2 -catenin signalling and podocyte dysfunction in proteinuric kidney disease. Nature Reviews Nephrology, 2015, 11, 535-545.	4.1	167
8	Sonic Hedgehog Signaling Mediates Epithelial–Mesenchymal Communication and Promotes Renal Fibrosis. Journal of the American Society of Nephrology: JASN, 2012, 23, 801-813.	3.0	166
9	Wnt9a Promotes Renal Fibrosis by Accelerating Cellular Senescence in Tubular Epithelial Cells. Journal of the American Society of Nephrology: JASN, 2018, 29, 1238-1256.	3.0	163
10	Wnt∫l^2â€catenin/RAS signaling mediates ageâ€related renal fibrosis and is associated with mitochondrial dysfunction. Aging Cell, 2019, 18, e13004.	3.0	155
11	Klotho Ameliorates Kidney Injury and Fibrosis and Normalizes Blood Pressure by Targeting the Renin-Angiotensin System. American Journal of Pathology, 2015, 185, 3211-3223.	1.9	124
12	Matrix Metalloproteinase-7 Is a Urinary Biomarker and Pathogenic Mediator of Kidney Fibrosis. Journal of the American Society of Nephrology: JASN, 2017, 28, 598-611.	3.0	118
13	Sonic Hedgehog Is a Novel Tubule-Derived Growth Factor for Interstitial Fibroblasts after Kidney Injury. Journal of the American Society of Nephrology: JASN, 2014, 25, 2187-2200.	3.0	116
14	Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury. Kidney International, 2013, 84, 509-520.	2.6	108
15	Wnt/ \hat{l}^2 -catenin links oxidative stress to podocyte injury and proteinuria. Kidney International, 2019, 95, 830-845.	2.6	105
16	The Signaling of Cellular Senescence in Diabetic Nephropathy. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-16.	1.9	104
17	Tenascin-C Is a Major Component of the Fibrogenic Niche in Kidney Fibrosis. Journal of the American Society of Nephrology: JASN, 2017, 28, 785-801.	3.0	87
18	(Pro)renin Receptor Is an Amplifier of Wnt/ \hat{l}^2 -Catenin Signaling in Kidney Injury and Fibrosis. Journal of the American Society of Nephrology: JASN, 2017, 28, 2393-2408.	3.0	86

#	Article	IF	CITATIONS
19	Tubule-derived exosomes play a central role in fibroblast activation and kidney fibrosis. Kidney International, 2020, 97, 1181-1195.	2.6	82
20	An essential role for Wnt/ \hat{l}^2 -catenin signaling in mediating hypertensive heart disease. Scientific Reports, 2018, 8, 8996.	1.6	68
21	Wnt/ \hat{l}^2 -catenin signaling mediates both heart and kidney injury in type 2 cardiorenal syndrome. Kidney International, 2019, 95, 815-829.	2.6	66
22	Wnt∫l²-catenin signaling and renin–angiotensin system in chronic kidney disease. Current Opinion in Nephrology and Hypertension, 2016, 25, 100-106.	1.0	61
23	The role of androgen and its related signals in PCOS. Journal of Cellular and Molecular Medicine, 2021, 25, 1825-1837.	1.6	61
24	Mutual Antagonism of Wilms' Tumor 1 and β-Catenin Dictates Podocyte Health and Disease. Journal of the American Society of Nephrology: JASN, 2015, 26, 677-691.	3.0	55
25	Extracellular Superoxide Dismutase Protects against Proteinuric Kidney Disease. Journal of the American Society of Nephrology: JASN, 2015, 26, 2447-2459.	3.0	54
26	A Klotho-derived peptide protects against kidney fibrosis by targeting TGF- \hat{l}^2 signaling. Nature Communications, 2022, 13, 438.	5.8	53
27	Targeted inhibition of the type 2 cannabinoid receptor is a novel approach to reduce renalÂfibrosis. Kidney International, 2018, 94, 756-772.	2.6	48
28	Dual catenin loss in murine liver causes tight junctional deregulation and progressive intrahepatic cholestasis. Hepatology, 2018, 67, 2320-2337.	3.6	40
29	Cellular Senescence in Kidney Fibrosis: Pathologic Significance and Therapeutic Strategies. Frontiers in Pharmacology, 2020, 11, 601325.	1.6	40
30	Fatty acid positional distribution (<i>sn</i> -2 fatty acids) and phospholipid composition in Chinese breast milk from colostrum to mature stage. British Journal of Nutrition, 2019, 121, 65-73.	1.2	38
31	C-X-C Chemokine Receptor Type 4 Plays a Crucial Role in Mediating Oxidative Stress-Induced Podocyte Injury. Antioxidants and Redox Signaling, 2017, 27, 345-362.	2.5	37
32	Tenascin-C protects against acute kidney injury by recruiting Wnt ligands. Kidney International, 2019, 95, 62-74.	2.6	34
33	Cannabinoid receptor type 2 promotes kidney fibrosis through orchestrating \hat{l}^2 -catenin signaling. Kidney International, 2021, 99, 364-381.	2.6	32
34	Advancements in therapeutic drugs targeting of senescence. Therapeutic Advances in Chronic Disease, 2020, 11, 204062232096412.	1.1	31
35	βâ€cateninâ€controlled tubular cellâ€derived exosomes play a key role in fibroblast activation via the OPNâ€CD44 axis. Journal of Extracellular Vesicles, 2022, 11, e12203.	5.5	31
36	Câ€Xâ€C motif chemokine receptor 4 aggravates renal fibrosis through activating JAK/STAT/GSK3β/βâ€catenin pathway. Journal of Cellular and Molecular Medicine, 2020, 24, 3837-3855.	1.6	30

#	Article	IF	Citations
37	Klotho retards renal fibrosis through targeting mitochondrial dysfunction and cellular senescence in renal tubular cells. Physiological Reports, 2021, 9, e14696.	0.7	30
38	Valproic Acid Limits Pancreatic Recovery after Pancreatitis by Inhibiting Histone Deacetylases and Preventing Acinar Redifferentiation Programs. American Journal of Pathology, 2015, 185, 3304-3315.	1.9	29
39	Wnt/ \hat{l}^2 -catenin regulates blood pressure and kidney injury in rats. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1313-1322.	1.8	29
40	Klotho-derived peptide 6 ameliorates diabetic kidney disease by targeting Wnt \hat{l}^2 -catenin signaling. Kidney International, 2022, 102, 506-520.	2.6	26
41	Stem/progenitor cell in kidney: characteristics, homing, coordination, and maintenance. Stem Cell Research and Therapy, 2021, 12, 197.	2.4	25
42	Serum testosterone acts as a prognostic indicator in polycystic ovary syndromeâ€associated kidney injury. Physiological Reports, 2019, 7, e14219.	0.7	24
43	Wnt signaling in kidney: the initiator or terminator?. Journal of Molecular Medicine, 2020, 98, 1511-1523.	1.7	20
44	CXCR4 induces podocyte injury and proteinuria by activating \hat{l}^2 -catenin signaling. Theranostics, 2022, 12, 767-781.	4.6	20
45	Autophagy negative-regulating Wnt signaling enhanced inflammatory osteoclastogenesis from Pre-OCs in vitro. Biomedicine and Pharmacotherapy, 2020, 126, 110093.	2.5	16
46	The Emerging Key Role of Klotho in the Hypothalamus–Pituitary–Ovarian Axis. Reproductive Sciences, 2021, 28, 322-331.	1.1	16
47	Identification of matrix metalloproteinase-10 as a key mediator of podocyte injury and proteinuria. Kidney International, 2021, 100, 837-849.	2.6	15
48	The relevance of organelle interactions in cellular senescence. Theranostics, 2022, 12, 2445-2464.	4.6	15
49	Penicilliumin B, a novel sesquiterpene methylcyclopentenedione from a deep sea-derived Penicillium strain with renoprotective activities. Scientific Reports, 2017, 7, 10757.	1.6	14
50	Relation of Transcriptional Factors to the Expression and Activity of Cytochrome P450 and UDP-Glucuronosyltransferases 1A in Human Liver: Co-Expression Network Analysis. AAPS Journal, 2017, 19, 203-214.	2.2	14
51	Cannabinoid receptor 2 plays a central role in renal tubular mitochondrial dysfunction and kidney ageing. Journal of Cellular and Molecular Medicine, 2021, 25, 8957-8972.	1.6	14
52	Mice with Hepatic Loss of the Desmosomal Protein \hat{I}^3 -Catenin Are Prone to Cholestatic Injury and Chemical Carcinogenesis. American Journal of Pathology, 2015, 185, 3274-3289.	1.9	12
53	Matrix metalloproteinase-10 protects against acute kidney injury by augmenting epidermal growth factor receptor signaling. Cell Death and Disease, 2021, 12, 70.	2.7	10
54	MicroRNAâ€466oâ€3p mediates βâ€cateninâ€induced podocyte injury by targeting Wilms tumor 1. FASEB Jour 2020, 34, 14424-14439.	nal _{0.2}	8

#	Article	IF	CITATIONS
55	The Role of Abnormal Uterine Junction Zone in the Occurrence and Development of Adenomyosis. Reproductive Sciences, 2022, 29, 2719-2730.	1.1	8
56	Role of miRNA-671-5p in Mediating Wnt/ \hat{l}^2 -Catenin-Triggered Podocyte Injury. Frontiers in Pharmacology, 2021, 12, 784489.	1.6	7
57	B7-1 mediates podocyte injury and glomerulosclerosis through communication with Hsp90ab1-LRP5-β-catenin pathway. Cell Death and Differentiation, 2022, 29, 2399-2416.	5.0	7
58	Penicilliumin B Protects against Cisplatin-Induced Renal Tubular Cell Apoptosis through Activation of AMPK-Induced Autophagy and Mitochondrial Biogenesis. Kidney Diseases (Basel, Switzerland), 2021, 7, 278-292.	1.2	6
59	AMPK Activator O304 Protects Against Kidney Aging Through Promoting Energy Metabolism and Autophagy. Frontiers in Pharmacology, 2022, 13, 836496.	1.6	5
60	CXC Chemokine Receptor 2 Accelerates Tubular Cell Senescence and Renal Fibrosis via β-Catenin-Induced Mitochondrial Dysfunction. Frontiers in Cell and Developmental Biology, 2022, 10, 862675.	1.8	4
61	Physiological system analysis of the kidney by highâ€temporalâ€resolution monitoring of an oxygenation step response. Magnetic Resonance in Medicine, 2021, 85, 334-345.	1.9	2
62	Complex regulatory interplay of γâ€catenin and βâ€catenin in liver cells (59.10). FASEB Journal, 2014, 28, 59.10.	0.2	0
63	Hepatocyteâ€specific γâ€catenin deletion lacks an overt phenotype (649.6). FASEB Journal, 2014, 28, 649.6.	0.2	O
64	Developing a Novel Anti-CD19/CD20 Bi-Specific Chimeric Antigen Receptor T (CAR-T) Cell Therapy for Relapsed/Refractory (r/r) B-Cell NHL. Blood, 2020, 136, 8-8.	0.6	0
65	Early Clinical Results of a Novel Anti-CD20 Chimeric Antigen Receptor (CAR)-T Cell Therapy for B-Cell NHL Patients Who Are Relapsed/Resistant Following CD19 CAR-T Therapy. Blood, 2020, 136, 8-9.	0.6	0