Anton V Tausenev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/214174/publications.pdf

Version: 2024-02-01

1040056 839539 20 620 9 18 citations h-index g-index papers 20 20 20 595 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mode-locked 193 μm thulium fiber laser with a carbon nanotube absorber. Optics Letters, 2008, 33, 1336.	3.3	371
2	177 fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes. Applied Physics Letters, 2008, 92, .	3.3	78
3	Femtosecond fiber laser based methane optical clock. Applied Physics B: Lasers and Optics, 2009, 95, 661-666.	2.2	30
4	Self-mode-locking in erbium-doped fibre lasers with saturable polymer film absorbers containing single-wall carbon nanotubes synthesised by the arc discharge method. Quantum Electronics, 2007, 37, 205-208.	1.0	25
5	Single nano-hole as a new effective nonlinear element for third-harmonic generation. Laser Physics Letters, 2013, 10, 075901.	1.4	19
6	Efficient source of femtosecond pulses and its use for broadband supercontinuum generation. Quantum Electronics, 2005, 35, 581-585.	1.0	16
7	Femtosecond Er3+ fiber laser for application in an optical clock. Laser Physics, 2007, 17, 1286-1291.	1.2	15
8	Ultrashort-pulse erbium-doped fibre laser using a saturable absorber based on single-wall carbon nanotubes synthesised by the arc-discharge method. Quantum Electronics, 2007, 37, 847-852.	1.0	15
9	Realisation of a compact methane optical clock. Quantum Electronics, 2008, 38, 613-614.	1.0	12
10	High-Peak-Power Femtosecond Pulse Generation by Nonlinear Compression in a Yb-Doped Hybrid Fiber. IEEE Photonics Journal, 2019, 11, 1-11.	2.0	8
11	Raman-converter-diode-pumped continuous-wave femtosecond Er-doped fibre laser. Quantum Electronics, 2004, 34, 106-110.	1.0	7
12	Nanolocalised source of femtosecond radiation. Quantum Electronics, 2013, 43, 379-387.	1.0	4
13	Nanoscale and femtosecond optical autocorrelator based on a single plasmonic nanostructure. Laser Physics Letters, 2014, 11, 105301.	1.4	4
14	Toward saturable absorbers for solid state lasers in form of holey fibers filled with singleâ€wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2010, 247, 3080-3083.	1.5	3
15	Femtosecond optical-to-microwave frequency divider with a relative instability of 10-4 – 10-16 (݄ = 1 –) Tj l	ЕТQ _{1.0} 1 0	.78 ģ 314 rgB⊤
16	Compression of femtosecond ytterbium fibre laser pulses using nonlinear processes in silica fibre. Quantum Electronics, 2018, 48, 476-480.	1.0	3
17	Methane microwave optical master oscillator for fountain references. Quantum Electronics, 2019, 49, 272-277.	1.0	3
18	A nanohole in a thin metal film as an efficient nonlinear optical element. Journal of Experimental and Theoretical Physics, 2013, 117, 21-31.	0.9	2

ANTON V TAUSENEV

#	Article	IF	CITATIONS
19	Methane based microwave reference oscillator. , 2017, , .		2
20	State of the art and outlook for investigations in the field of optical metrology and quantum frequency standards. Quantum Electronics, 2004, 34, 1083-1083.	1.0	0