Ilsiya Davletbaeva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2141638/publications.pdf

Version: 2024-02-01

1040056 996975 29 257 9 15 g-index citations h-index papers 29 29 29 140 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Gel-polymer electrolytes based on polyurethane ionomers for lithium power sources. RSC Advances, 2021, 11, 21548-21559.	3.6	5
2	Thermal Behavior of Polyurethane Ionomers Based on Amino Ethers of Orthophosphoric Acid. Polymer Science - Series A, 2020, 62, 458-469.	1.0	4
3	Polyurethanes Based on Modified Amino Ethers of Boric Acid. Polymer Science - Series B, 2020, 62, 375-384.	0.8	7
4	Synthesis and Characterization of Novel Nanoporous Gl-POSS-Branched Polymeric Gas Separation Membranes. Membranes, 2020, 10 , 110 .	3.0	9
5	Water vapor permeable polyurethane films based on the hyperbranched aminoethers of boric acid. RSC Advances, 2019, 9, 23535-23544.	3.6	9
6	Synthesis and characterization of amphiphilic branched silica derivatives associated with oligomeric medium. RSC Advances, 2019, 9, 21233-21242.	3.6	7
7	Polyurethane ionomers based on amino ethers of <i>ortho</i> -phosphoric acid. RSC Advances, 2019, 9, 18599-18608.	3.6	8
8	Synthesis and Study of Gas Transport Properties of Polymers Based on Macroinitiators and 2,4-Toluene Diisocyanate. Membranes, 2019, 9, 42.	3.0	9
9	Synthesis of Block Copolymers Based on a Macroinitiator and 2,4-Toluene Diisocyanate. Polymer Science - Series B, 2018, 60, 51-57.	0.8	7
10	Framed aromatic polyurethanes based on an anionic macroinitiator, 4,4'-diphenylmethane diisocyanate, and 4,4'-dihydroxy-2,2-diphenylpropane: Synthesis and characterization. Polymer Science - Series B, 2017, 59, 43-50.	0.8	1
11	Framed aromatic polyurethanes based on an anionic macroinitiator, 4,4'-diphenylmethane diisocyanate, and 4,4'-dihydroxy-2,2-diphenylpropane: Metal-complex modification. Polymer Science - Series B, 2017, 59, 69-79.	0.8	1
12	The Effect of Microporous Polymeric Support Modification on Surface and Gas Transport Properties of Supported Ionic Liquid Membranes. Membranes, 2016, 6, 4.	3.0	39
13	An atomic force microscopy study of hybrid polymeric membranes: Surface topographical analysis and estimation of pore size distribution. Petroleum Chemistry, 2016, 56, 427-435.	1.4	8
14	Porous polyurethanes based on hyperbranched amino ethers of boric acid. RSC Advances, 2016, 6, 111109-111119.	3.6	26
15	Synthesis and properties of novel polyurethanes based on amino ethers of boric acid for gas separation membranes. RSC Advances, 2015, 5, 65674-65683.	3.6	25
16	Immobilization of organic reagents on optically transparent mesoporous polymers and its analytical use. Russian Journal of Applied Chemistry, 2015, 88, 494-500.	0.5	4
17	Optically transparent mesoporous polymers based on anionic macroinitiators and 2,4-toluene diisocyanate. Polymer Science - Series B, 2014, 56, 814-821.	0.8	16
18	Heteronuclear coordination compounds of copper and cobalt in urethane-yielding reactions. Russian Journal of Applied Chemistry, 2014, 87, 861-866.	0.5	3

#	Article	IF	CITATIONS
19	Supramolecular architecture of polymers as the basis of obtaining mesoporous polymers. Composite Interfaces, 2014, 21, 611-621.	2.3	13
20	Polyurethanes based on anionic macroinitiators, aromatic isocyanates, and 4,4′-dihydroxy-2,2-diphenylpropane. Russian Journal of Applied Chemistry, 2014, 87, 468-473.	0.5	7
21	Polymers derived from a polyether, 2,4-toluene diisocyanate, and octamethylcyclotetrasiloxane. Russian Journal of Applied Chemistry, 2011, 84, 1587-1590.	0.5	7
22	Spectral luminescent and laser properties of rhodamine 6G in poly(urethane-co-siloxanes). Polymer Science - Series A, 2011, 53, 578-582.	1.0	5
23	Synthesis of polysiloxaneurethane polymers by the aromatic isocyanate-activated opening of the octamethyltetrasiloxane ring via an anionic mechanism. Theoretical Foundations of Chemical Engineering, 2010, 44, 150-161.	0.7	2
24	Intermolecular interactions in metal-containing polymers based on 2,4-toluylene diisocyanate and open-chain analogs of crown ethers. Polymer Science - Series A, 2010, 52, 392-397.	1.0	13
25	Effects of temperature and concentration factors on the conformational state and reactivity of potassium poly(oxyethylene glycolate). Polymer Science - Series A, 2010, 52, 914-918.	1.0	7
26	Study of isocyanate group opening initiated by potassium polyoxyethylene glycolate. Polymer Science - Series A, 2007, 49, 896-902.	1.0	5
27	Mössbauer study of structurally ordered iron coordination compounds and polyurethanes crosslinked by them. Polymer Science - Series A, 2006, 48, 612-617.	1.0	6
28	Title is missing!. Russian Journal of Applied Chemistry, 2001, 74, 830-833.	0.5	1
29	Dielectric properties of organophosphorus polyurethane ionomers. Journal of Applied Polymer Science, 0, , 51751.	2.6	3