
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/214163/publications.pdf Version: 2024-02-01

ALFIANDRO MARTINEZ

#	Article	IF	CITATIONS
1	Thermal Properties of Nanocrystalline Silicon Nanobeams. Advanced Functional Materials, 2022, 32, .	14.9	5
2	Enhanced excitation and readout of plasmonic cavity modes in NPoM via SiN waveguides for on-chip SERS. Optics Express, 2022, 30, 4553.	3.4	5
3	Room-Temperature Silicon Platform for GHz-Frequency Nanoelectro-Opto-Mechanical Systems. ACS Photonics, 2022, 9, 413-419.	6.6	13
4	Optomechanical Modulation Spectroscopy of Bound States in the Continuum in a Dielectric Metasurface. Physical Review Applied, 2022, 17, .	3.8	6
5	Theoretical Generalization of the Optical Chirality to Arbitrary Optical Media. Topics in Applied Physics, 2021, , 323-355.	0.8	Ο
6	Ultracompact silicon optomechanical cavities as optical upconverters of OFDM wireless signals. , 2021, , .		0
7	Vertical Engineering for Large Brillouin Gain in Unreleased Silicon-Based Waveguides. Physical Review Applied, 2021, 15, .	3.8	5
8	Interfering Plasmons in Coupled Nanoresonators to Boost Light Localization and SERS. Nano Letters, 2021, 21, 2512-2518.	9.1	31
9	Floquet Phonon Lasing in Multimode Optomechanical Systems. Physical Review Letters, 2021, 127, 073601.	7.8	31
10	Hybrid photonic-plasmonic cavities based on the nanoparticle-on-a-mirror configuration. Photonics Research, 2021, 9, 2398.	7.0	24
11	Performance improvement of a silicon nitride ring resonator biosensor operated in the TM mode at 1310â€nm. Biomedical Optics Express, 2021, 12, 7244.	2.9	11
12	Injection locking in an optomechanical coherent phonon source. Nanophotonics, 2021, 10, 1319-1327.	6.0	12
13	Optical Up/Down-conversion of OFDM Wireless Signals based on Ultracompact Silicon Optomechanical Cavities. , 2021, , .		Ο
14	Radiationless anapole states in on-chip photonics. Light: Science and Applications, 2021, 10, 204.	16.6	20
15	Photonic Frequency Conversion of OFDM Microwave Signals in a Wavelengthâ€6cale Optomechanical Cavity. Laser and Photonics Reviews, 2021, 15, 2100175.	8.7	5
16	Continuous-wave frequency upconversion with a molecular optomechanical nanocavity. Science, 2021, 374, 1264-1267.	12.6	63
17	Detecting mid-infrared light by molecular frequency upconversion in dual-wavelength nanoantennas. Science, 2021, 374, 1268-1271.	12.6	61
18	Multimode mechanical confinement in 1D silicon optomechanical crystal cavities. , 2021, , .		0

#	Article	IF	CITATIONS
19	Bandgap closure in 1D photonic crystals from interplay between Mie resonances. , 2021, , .		Ο
20	High-Frequency Mechanical Excitation of a Silicon Nanostring with Piezoelectric Aluminum Nitride Layers. Physical Review Applied, 2020, 14, .	3.8	9
21	Toward Chiral Sensing and Spectroscopy Enabled by Allâ€Dielectric Integrated Photonic Waveguides. Laser and Photonics Reviews, 2020, 14, 1900422.	8.7	10
22	Dispersive optomechanics of supercavity modes in high-index disks. Optics Letters, 2020, 45, 5238.	3.3	4
23	Microwave oscillator and frequency comb in a silicon optomechanical cavity with a full phononic bandgap. Nanophotonics, 2020, 9, 3535-3544.	6.0	27
24	Properties of nanocrystalline silicon probed by optomechanics. Nanophotonics, 2020, 9, 4819-4829.	6.0	4
25	In-Plane Driving of Anapole Resonances in Silicon Disks at Telecom Wavelengths. , 2020, , .		Ο
26	Towards Integrated Chiroptical Applications. , 2020, , .		0
27	Synchronization of Optomechanical Nanobeams by Mechanical Interaction. Physical Review Letters, 2019, 123, 017402.	7.8	44
28	Near-Field Directionality Beyond the Dipole Approximation: Electric Quadrupole and Higher-Order Multipole Angular Spectra. Physical Review Applied, 2019, 12, .	3.8	18
29	SERS Detection via Individual Bowtie Nanoantennas Integrated in Si ₃ N ₄ Waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-6.	2.9	15
30	Chiral Properties of Light in Material Systems. , 2019, , .		0
31	Chiral Properties of Light in Material Systems. , 2019, , .		Ο
32	Classical emergence of intrinsic spin-orbit interaction of light at the nanoscale. Physical Review A, 2018, 97, .	2.5	7
33	Polarimetry enabled by nanophotonics. Science, 2018, 362, 750-751.	12.6	36
34	Optical modulation of coherent phonon emission in optomechanical cavities. APL Photonics, 2018, 3, 126102.	5.7	11
35	Metamaterial Platforms for Spintronic Modulation of Mid-Infrared Response under Very Weak Magnetic Field. ACS Photonics, 2018, 5, 3956-3961.	6.6	20
36	Nanocrystalline silicon optomechanical cavities. Optics Express, 2018, 26, 9829.	3.4	11

#	Article	IF	CITATIONS
37	Optical Chirality in Dispersive and Lossy Media. Physical Review Letters, 2018, 121, 043901.	7.8	54
38	Coherent Control of a Plasmonic Nanoantenna Integrated on a Silicon Chip. ACS Photonics, 2018, 5, 2712-2717.	6.6	18
39	Integration of subwavelength nanostructures in silicon waveguides: new phenomena and applications. , 2018, , .		1
40	Fano resonances and electromagnetically induced transparency in silicon waveguides loaded with plasmonic nanoresonators. Journal of Optics (United Kingdom), 2017, 19, 025003.	2.2	15
41	Nonlinear dynamics and chaos in an optomechanical beam. Nature Communications, 2017, 8, 14965.	12.8	75
42	On-Chip Optimal Stokes Nanopolarimetry Based on Spin–Orbit Interaction of Light. Nano Letters, 2017, 17, 3139-3144.	9.1	71
43	Intrinsic spin-orbit coupling of light at the nanoscale in free space. , 2017, , .		0
44	Integration of magnetic plasmonic nanoantennas on a silicon chip. , 2017, , .		0
45	Transformation based diffusive-light cloak for transient illumination. , 2017, , .		0
46	Stokes nanopolarimeter based on spin-orbit interaction of light. , 2017, , .		0
47	Embedding a plasmonic nanoantenna into a silicon waveguide gap: Simulations and experimental demonstration. , 2016, , .		0
48	Diffusive-light invisibility cloak for transient illumination. Physical Review A, 2016, 94, .	2.5	14
49	Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps. Optics Express, 2016, 24, 9592.	3.4	30
50	Self-pulsing and phonon lasing in optomechanical crystals. , 2016, , .		0
51	Exploiting metamaterials, plasmonics and nanoantennas concepts in silicon photonics. Journal of Optics (United Kingdom), 2016, 18, 123001.	2.2	36
52	Transverse Spin and Spin-Orbit Coupling in Silicon Waveguides. IEEE Photonics Technology Letters, 2016, 28, 1561-1564.	2.5	45
53	A subwavelength Stokes polarimeter on a silicon chip. Proceedings of SPIE, 2016, , .	0.8	0
54	Full measurement of the stokes parameters of a light beam using on-chip silicon nanoantennas. , 2015, ,		1

4

.

#	Article	IF	CITATIONS
55	A self-stabilized coherent phonon source driven by optical forces. Scientific Reports, 2015, 5, 15733.	3.3	39
56	Mid-infrared plasmonic inductors: Enhancing inductance with meandering lines. Scientific Reports, 2015, 4, 3592.	3.3	12
57	Bringing metamaterials, plasmonics and nanoantennas concepts into silicon photonics. , 2015, , .		0
58	Switchable optical forces due to polarization-dependent spin-orbit coupling on particles near a surface. , 2015, , .		0
59	Lateral forces on circularly polarizable particles near a surface. Nature Communications, 2015, 6, 8799.	12.8	159
60	Mid-infrared Plasmonic Inductors. , 2014, , .		1
61	Dynamical back-action at 5.5 GHz in a corrugated optomechanical beam. AIP Advances, 2014, 4, .	1.3	18
62	Cavity modes and optomechanic interactions in strip waveguide. IOP Conference Series: Materials Science and Engineering, 2014, 68, 012003.	0.6	1
63	Spatial sorting and routing of electromagnetic waves based on polarization control. , 2014, , .		Ο
64	Polarization synthesis and sorting with an integrated silicon nanoantenna. , 2014, , .		0
65	Resolving light spin with a silicon microdisk nanoantenna. , 2014, , .		0
66	Sorting linearly polarized photons with a single scatterer. Optics Letters, 2014, 39, 1394.	3.3	31
67	Optical and mechanical mode tuning in an optomechanical crystal with light-induced thermal effects. Journal of Applied Physics, 2014, 116, 093506.	2.5	5
68	Directive excitation of guided electromagnetic waves through polarization control. Physical Review B, 2014, 89, .	3.2	5
69	Design of single-mode waveguides for enhanced light-sound interaction in honeycomb-lattice silicon slabs. Journal of Applied Physics, 2014, 115, .	2.5	25
70	Universal method for the synthesis of arbitrary polarization states radiated by a nanoantenna. Laser and Photonics Reviews, 2014, 8, L27.	8.7	37
71	Modeling light-sound interaction in nanoscale cavities and waveguides. Nanophotonics, 2014, 3, 413-440.	6.0	82
72	Full three-dimensional isotropic transformation media. New Journal of Physics, 2014, 16, 023030.	2.9	10

#	Article	IF	CITATIONS
73	Space–time transformation acoustics. Wave Motion, 2014, 51, 785-797.	2.0	14
74	Transformational acoustic metamaterials based on pressure gradients. Physical Review B, 2014, 90, .	3.2	4
75	A one-dimensional optomechanical crystal with a complete phononic band gap. Nature Communications, 2014, 5, 4452.	12.8	138
76	A PhoXonic crystal: Photonic and phononic bandgaps in a 1D optomechanical crystal. , 2014, , .		0
77	Compact Dual-Band Terahertz Quarter-Wave Plate Metasurface. IEEE Photonics Technology Letters, 2014, 26, 1679-1682.	2.5	24
78	Terahertz Metamaterials on Flexible Polypropylene Substrate. Plasmonics, 2014, 9, 1143-1147.	3.4	22
79	Optomechanic interaction in a corrugated phoxonic nanobeam cavity. Physical Review B, 2014, 89, .	3.2	46
80	Resolving Light Handedness with an on-Chip Silicon Microdisk. ACS Photonics, 2014, 1, 762-767.	6.6	108
81	Analogue transformation acoustics and the compression of spacetime. Photonics and Nanostructures - Fundamentals and Applications, 2014, 12, 312-318.	2.0	9
82	Extraordinary Transmission-inspired Dual-band THz Quarter-wave Plate. , 2014, , .		0
83	Optical gain by simultaneous photon and phonon confinement in indirect bandgap semiconductor acousto-optical cavities. Optical and Quantum Electronics, 2013, 45, 1045-1056.	3.3	4
84	Analysis of optomechanical coupling in two-dimensional square lattice phoxonic crystal slab cavities. Physical Review B, 2013, 88, .	3.2	48
85	Analogue Transformations in Physics and their Application to Acoustics. Scientific Reports, 2013, 3, 2009.	3.3	39
86	Theoretical study about the relations among coefficients of stimulated emission, spontaneous emission and absorption in indirect bandgap semiconductor. Physica B: Condensed Matter, 2013, 411, 52-55.	2.7	1
87	Magnetic Hot Spots in Closely Spaced Thick Gold Nanorings. Nano Letters, 2013, 13, 2654-2661.	9.1	48
88	Phoxonic crystals: tailoring the light-sound interaction at the nanoscale. , 2013, , .		2
89	Near-Field Interference for the Unidirectional Excitation of Electromagnetic Guided Modes. Science, 2013, 340, 328-330.	12.6	571
90	Analogue transformation acoustics: Generalizing transformation techniques to non-form-invariant equations. , 2013, , .		1

#	Article	IF	CITATIONS
91	Dispersion relation of coupled-resonator acoustic waveguides formed by defect cavities in a phononic crystal. Journal Physics D: Applied Physics, 2013, 46, 475301.	2.8	32
92	Multidimensional metamaterial fluid sensor. , 2013, , .		0
93	Effect of loss on the dispersion relation of photonic and phononic crystals. Physical Review B, 2013, 88, .	3.2	27
94	Strong magnetic resonance of coupled aluminum nanodisks on top of a silicon waveguide. , 2012, , .		8
95	High order standing-wave plasmon resonances in silver u-shaped nanowires. Journal of Applied Physics, 2012, 112, 103104.	2.5	4
96	Strong magnetism by closely spaced gold nanohoops. , 2012, , .		0
97	Theoretical study about the gain in indirect bandgap semiconductor acousto-optical cavities with simultaneous photon and phonon confinement. , 2012, , .		0
98	Jaynes-Cummings model of an indirect gap semiconductor cavity. Proceedings of SPIE, 2012, , .	0.8	0
99	Theoretical study about the behavior of two-level systems inside of optomechanical cavity where mechanical oscillations are induced. Proceedings of SPIE, 2012, , .	0.8	0
100	Analogue of the Quantum Hanle Effect and Polarization Conversion in Non-Hermitian Plasmonic Metamaterials. Nano Letters, 2012, 12, 6309-6314.	9.1	21
101	Honeycomb Photonic Crystal Waveguides in a Suspended Silicon Slab. IEEE Photonics Technology Letters, 2012, 24, 2056-2059.	2.5	7
102	Experimental demonstration of waveguiding in honeycomb and square-lattice silicon photonic crystal membranes. Proceedings of SPIE, 2012, , .	0.8	1
103	Exciting Surface Plasmons with Transformation Media. Plasmonics, 2012, 7, 701-707.	3.4	2
104	Theoretical study about the gain in indirect bandgap semiconductor optical cavities. Physica B: Condensed Matter, 2012, 407, 2044-2049.	2.7	8
105	Ultrafast nonlinear dynamics in silicon nanocrystal-based horizontal slot waveguides. , 2011, , .		2
106	Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses. Applied Physics Letters, 2011, 98, .	3.3	51
107	Squeezing and expanding light without reflections via transformation optics. Optics Express, 2011, 19, 3562.	3.4	51
108	Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon. Optics Express, 2011, 19, 7664.	3.4	17

#	Article	IF	CITATIONS
109	Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs. Optics Express, 2011, 19, 9690.	3.4	83
110	Engineering antenna radiation patterns via quasi-conformal mappings. Optics Express, 2011, 19, 23743.	3.4	41
111	Dual-band double-negative-index fishnet metamaterial at millimeter-waves. Optics Letters, 2011, 36, 4245.	3.3	4
112	PhoXonic architectures for tailoring the acousto-optic interaction. , 2011, , .		2
113	Low-Loss Multilayered Metamaterial Exhibiting a Negative Index of Refraction at Visible Wavelengths. Physical Review Letters, 2011, 106, 067402.	7.8	158
114	Band gaps and cavity modes in dual phononic and photonic strip waveguides. AIP Advances, 2011, 1, .	1.3	48
115	RF frequency transparent 90 \hat{A}^{o} hybrid based on silicon on insulator photonic circuit. , 2010, , .		Ο
116	FWM in silicon nanocrystal-based sandwiched slot waveguides. Optics Communications, 2010, 283, 435-437.	2.1	24
117	Ultrafast all-optical logic gates with silicon nanocrystal-based slot waveguides. , 2010, , .		2
118	Light compression without reflections. Proceedings of SPIE, 2010, , .	0.8	0
119	Enlarged negative effective index bandwidth from fishnet metamaterials. , 2010, , .		Ο
120	Ultrafast All-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths. Nano Letters, 2010, 10, 1506-1511.	9.1	218
121	Multiple extraordinary optical transmission peaks from evanescent coupling in perforated metal plates surrounded by dielectrics. Optics Express, 2010, 18, 7893.	3.4	12
122	Simultaneous existence of phononic and photonic band gaps in periodic crystal slabs. Optics Express, 2010, 18, 14301.	3.4	117
123	Enlarging the negative-index bandwidth of optical metamaterials by hybridized plasmon resonances. Optics Letters, 2010, 35, 4205.	3.3	5
124	Zero-bandwidth mode in a split-ring-resonator-loaded one-dimensional photonic crystal. Physical Review B, 2010, 81, .	3.2	3
125	Design of waveguides in silicon phoxonic crystal slabs. , 2010, , .		4
126	Dual phononic and photonic band gaps in a periodic array of pillars deposited on a thin plate. Physical Review B, 2010, 82, .	3.2	65

#	Article	IF	CITATIONS
127	Negative index metamaterial through high-order plasmon resonances on u-shaped nanowires. , 2009, , .		0
128	Midinfrared filters based on extraordinary optical transmission through subwavelength structured gold films. Journal of Applied Physics, 2009, 106, .	2.5	10
129	Proposal of an OADM configuration with ultra-large FSR combining ring resonators and photonic bandgap structures. Optics Communications, 2009, 282, 1771-1774.	2.1	4
130	Modeling high-order plasmon resonances of a U-shaped nanowire used to build a negative-index metamaterial. Physical Review B, 2009, 79, .	3.2	13
131	Silicon cross-slot waveguides insensitive to polarization. , 2009, , .		4
132	Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays. Physical Review B, 2009, 79, .	3.2	138
133	Double-negative polarization-independent fishnet metamaterial in the visible spectrum. Optics Letters, 2009, 34, 1603.	3.3	79
134	Coaxial plasmonic waveguide array as a negative-index metamaterial. Optics Letters, 2009, 34, 3325.	3.3	14
135	Negative refractive index metamaterials aided by extraordinary optical transmission. Optics Express, 2009, 17, 6026.	3.4	31
136	Study of asymmetric silicon cross-slot waveguides for polarization diversity schemes. Applied Optics, 2009, 48, 2693.	2.1	36
137	Double-negative polarization-independent fishnet metamaterial operating in the visible spectrum. , 2009, , .		Ο
138	Characterization of a new 90° phase shift for QAM-QPSK photonic vectorial modulators/demodulators. , 2009, , .		0
139	Metamaterials for optical security. Applied Physics Letters, 2009, 94, .	3.3	15
140	High efficiency fiber coupling to silicon sandwiched slot waveguides. Optics Communications, 2008, 281, 5173-5176.	2.1	11
141	Analysis of Hybrid Dielectric Plasmonic Waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 1496-1501.	2.9	59
142	1D periodic structures for slow-wave induced non-linearity enhancement. Optics Express, 2008, 16, 3146.	3.4	27
143	Vertical grating couplers for silicon sandwiched slot waveguides. , 2008, , .		4
144	Experimental characterization of Mach-Zehnder interferometers with coupled ring resonators in Silicon nanocrystals horizontal slot waveguides. , 2008, , .		0

#	Article	IF	CITATIONS
145	Group velocity dispersion in horizontal slot waveguides filled by Si nanocrystals. , 2008, , .		8
146	Cadmium telluride: a silicon-compatible optical material as an alternative technology for building all-optical photonic devices. , 2008, , .		3
147	Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition. Journal of Applied Physics, 2008, 103, .	2.5	78
148	Experimental observation of intermodal dispersion in photonic crystal directional couplers. Journal of Applied Physics, 2008, 104, 123107.	2.5	3
149	Electromagnetic beaming from omnidirectional sources by inverse design. Applied Physics Letters, 2008, 92, 051105.	3.3	1
150	Optical add-drop multiplexer with FSR higher than 140 nm using ring resonators and photonic bandgap structures. , 2008, , .		2
151	Photonic switching on silicon: the FP6-PHOLOGIC approach. , 2008, , .		Ο
152	Intrinsic losses of coupled-cavity waveguides in planar-photonic crystals. Optics Letters, 2007, 32, 635.	3.3	24
153	Numerical analysis of the performance of Mach-Zehnder interferometric logic gates enhanced with coupled nonlinear ring- resonators. Optics Express, 2007, 15, 2323.	3.4	7
154	Low-loss single-layer metamaterial with negative index of refraction at visible wavelengths. Optics Express, 2007, 15, 9320.	3.4	22
155	Full-Duplex DOCSIS/WirelessDOCSIS Fiber–Radio Network Employing Packaged AFPMs as Optical/Electrical Transducers. Journal of Lightwave Technology, 2007, 25, 673-684.	4.6	10
156	Design of Silicon-Based Slot Waveguide Configurations for Optimum Nonlinear Performance. Journal of Lightwave Technology, 2007, 25, 1298-1305.	4.6	115
157	All-Optical MZI XOR Logic Gate based on Si Slot Waveguides Filled by Si-nc Embedded in SiO2. , 2006, , .		7
158	Radio-over-Fiber Architecture for Simultaneous Feeding of 5.5 and 41 GHz WiFi or WiMAX Access Networks. , 2006, , .		7
159	Generation of Highly-Directional Beams from Point Sources using a Negative-Index Photonic-Crystal Slab. , 2006, , .		Ο
160	Experimental Demonstration of Full-Duplex DOCSIS Signal Transmissions over a Wireline/Wireless-Fibre Access Network. , 2006, , .		0
161	Full-duplex DOCSIS/WirelessDOCSIS fiber-radio network employing packaged AFPM-based base-stations. IEEE Photonics Technology Letters, 2006, 18, 406-408.	2.5	16
162	Positive phase evolution of waves propagating along a photonic crystal with negative index of refraction. Optics Express, 2006, 14, 9805.	3.4	10

#	Article	IF	CITATIONS
163	Generation of highly directional beam by k-space filtering using a metamaterial flat slab with a small negative index of refraction. Applied Physics Letters, 2006, 89, 131111.	3.3	18
164	Corrugated SOI Waveguide for Optimal Slow-Light Elements. , 2006, , .		0
165	Experimental demonstration of adiabatic coupling into SOI photonic crystal coupled-cavity waveguides. , 2005, , .		2
166	Amphoteric-like refraction in a two-dimensional photonic crystal. Applied Physics B: Lasers and Optics, 2005, 81, 301-304.	2.2	0
167	Mach–Zehnder interferometers in photonic crystals. Optical and Quantum Electronics, 2005, 37, 77-93.	3.3	32
168	Broadening compensation for ultrashort pulses in photonic crystals. Optical and Quantum Electronics, 2005, 37, 199-211.	3.3	2
169	Negative refraction in two-dimensional photonic crystals: Role of lattice orientation and interface termination. Physical Review B, 2005, 71, .	3.2	43
170	Pulse propagation in adiabatically coupled photonic crystal coupled cavity waveguides. Journal of Applied Physics, 2005, 97, 013101.	2.5	14
171	Photonic Vector Demodulation Architecture for Remote Detection of M-QAM Signals. , 2005, , .		2
172	Remote Delivery of DOCSIS Signals over a Hybrid Fiber Radio Link for Simultaneous Wireline and Wireless Access. , 2005, , .		4
173	Analysis of wave focusing inside a negative-index photonic-crystal slab. Optics Express, 2005, 13, 2858.	3.4	21
174	Analysis of wave propagation in a two-dimensional photonic crystal with negative index of refraction: plane wave decomposition of the Bloch modes. Optics Express, 2005, 13, 4160.	3.4	22
175	Direct photonic generation of electrical vector modulations at microwave/millimeter-wave frequencies. IEEE Photonics Technology Letters, 2005, 17, 1947-1949.	2.5	16
176	Numerical Analysis of All-Optical Switching Based on a 2-D Nonlinear Photonic Crystal Directional Coupler. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10, 1101-1106.	2.9	16
177	Photonic-microwave harmonic mixers based on electroabsorption modulators. Microwave and Optical Technology Letters, 2004, 41, 361-364.	1.4	Ο
178	Dispersion-Tolerant Transmission of QPSK and>tex<\$M\$>/tex<-QAM Signals Simultaneously Modulated at 1 and 38 GHz Over a Hybrid Fiber-Radio Link. IEEE Photonics Technology Letters, 2004, 16, 659-661.	2.5	12
179	All-optical switching structure based on a photonic crystal directional coupler. Optics Express, 2004, 12, 161.	3.4	126
180	Experimental and theoretical analysis of the self-focusing of light by a photonic crystal lens. Physical Review B, 2004, 69, .	3.2	54

#	Article	IF	CITATIONS
181	Multiple-frequency photonic bandgap microstrip structures based on defects insertion. Microwave and Optical Technology Letters, 2003, 36, 479-481.	1.4	6
182	Photonic-crystal 180° power splitter based on coupled-cavity waveguides. Applied Physics Letters, 2003, 83, 3033-3035.	3.3	19
183	Experimental demonstration of dispersion-tolerant 155-Mb/s BPSK data transmission at 40 GHz using an optical coherent harmonic generation technique. IEEE Photonics Technology Letters, 2003, 15, 772-774.	2.5	18
184	Ultrashort 2-D photonic crystal directional couplers. IEEE Photonics Technology Letters, 2003, 15, 694-696.	2.5	106
185	Microstrip multistage coupled ring bandpass filters using photonic bandgap structures for harmonic suppression. Electronics Letters, 2003, 39, 68.	1.0	22
186	Mach–Zehnder interferometer employing coupled-resonator optical waveguides. Optics Letters, 2003, 28, 405.	3.3	50
187	Analysis of adiabatic coupling between photonic crystal single-line-defect and coupled-resonator optical waveguides. Optics Letters, 2003, 28, 1903.	3.3	17
188	Group velocity and dispersion model of coupled-cavity waveguides in photonic crystals. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2003, 20, 147.	1.5	43
189	Planar photonic crystal structure with inherently single-mode waveguides. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2003, 20, 2131.	1.5	7
190	Experimental demonstration of photonic crystal directional coupler at microwave frequencies. Electronics Letters, 2003, 39, 455.	1.0	21
191	Wavelength Demultiplexing Structure Based on Coupled-Cavity Waveguides in Photonic Crystals. Fiber and Integrated Optics, 2003, 22, 151-160.	2.5	12
192	Mode matching technique for highly efficient coupling between dielectric waveguides and planar photonic crystal circuits. Optics Express, 2002, 10, 1391.	3.4	54
193	Simultaneous baseband and RF optical modulation scheme for feeding wireless and wireline heterogeneous access networks. IEEE Transactions on Microwave Theory and Techniques, 2001, 49, 2018-2024.	4.6	60
194	Dual-baseband and RF modulation scheme for Gbit/s heterogeneous fiber-wireless access networks. Microwave and Optical Technology Letters, 2001, 30, 372-374.	1.4	1
195	Photonic Vector Modulation Tx/Rx Architecture for Generation, Remote Delivery and Detection of M-QAM Signals. , 0, , .		4
196	Full Measurement of the Stokes Parameters Using a Subwavelength Silicon On-Chip Polarimeter. Advances in Science and Technology, 0, , .	0.2	0
197	Photonic Bandgap (PBC). , 0, , .		О