
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2141515/publications.pdf Version: 2024-02-01

FENC WANC

#	Article	IF	CITATIONS
1	Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature, 2010, 463, 1061-1065.	27.8	2,872
2	Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chemical Society Reviews, 2009, 38, 976.	38.1	2,677
3	Tuning upconversion through energy migration in core–shell nanoparticles. Nature Materials, 2011, 10, 968-973.	27.5	1,570
4	Upconversion Multicolor Fine-Tuning: Visible to Near-Infrared Emission from Lanthanide-Doped NaYF ₄ Nanoparticles. Journal of the American Chemical Society, 2008, 130, 5642-5643.	13.7	1,367
5	Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst, The, 2010, 135, 1839.	3.5	1,278
6	Optical modulators with 2D layered materials. Nature Photonics, 2016, 10, 227-238.	31.4	1,188
7	Direct Evidence of a Surface Quenching Effect on Sizeâ€Dependent Luminescence of Upconversion Nanoparticles. Angewandte Chemie - International Edition, 2010, 49, 7456-7460.	13.8	801
8	One-Step, Room Temperature, Colorimetric Detection of Mercury (Hg ²⁺) Using DNA/Nanoparticle Conjugates. Journal of the American Chemical Society, 2008, 130, 3244-3245.	13.7	695
9	Enhancing multiphoton upconversion through energy clustering at sublattice level. Nature Materials, 2014, 13, 157-162.	27.5	528
10	Luminescent nanomaterials for biological labelling. Nanotechnology, 2006, 17, R1-R13.	2.6	514
11	Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes. Nature Protocols, 2014, 9, 1634-1644.	12.0	501
12	Singleâ€Band Upconversion Emission in Lanthanideâ€Doped KMnF ₃ Nanocrystals. Angewandte Chemie - International Edition, 2011, 50, 10369-10372.	13.8	423
13	The Effect of Surface Coating on Energy Migration-Mediated Upconversion. Journal of the American Chemical Society, 2012, 134, 20849-20857.	13.7	405
14	Photon upconversion in core–shell nanoparticles. Chemical Society Reviews, 2015, 44, 1318-1330.	38.1	399
15	Multicolor Tuning of Lanthanide-Doped Nanoparticles by Single Wavelength Excitation. Accounts of Chemical Research, 2014, 47, 1378-1385.	15.6	391
16	Rare-Earth Doping in Nanostructured Inorganic Materials. Chemical Reviews, 2022, 122, 5519-5603.	47.7	338
17	Upconverting Nearâ€Infrared Light through Energy Management in Core–Shell–Shell Nanoparticles. Angewandte Chemie - International Edition, 2013, 52, 13419-13423.	13.8	315
18	Synthesis of polyethylenimine/NaYF4nanoparticles with upconversion fluorescence. Nanotechnology, 2006, 17, 5786-5791.	2.6	280

#	Article	IF	CITATIONS
19	Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing. Nature Communications, 2016, 7, 10304.	12.8	255
20	Multicolor Tuning of (Ln, P)â€Doped YVO ₄ Nanoparticles by Singleâ€Wavelength Excitation. Angewandte Chemie - International Edition, 2008, 47, 906-909.	13.8	245
21	Combating Concentration Quenching in Upconversion Nanoparticles. Accounts of Chemical Research, 2020, 53, 358-367.	15.6	183
22	NaYF4:Yb,Tm/CdS composite as a novel near-infrared-driven photocatalyst. Applied Catalysis B: Environmental, 2010, 100, 433-439.	20.2	165
23	Direct Evidence of a Surface Quenching Effect on Sizeâ€Dependent Luminescence of Upconversion Nanoparticles. Angewandte Chemie, 2010, 122, 7618-7622.	2.0	162
24	Thermal Enhancement of Upconversion by Negative Lattice Expansion in Orthorhombic Yb ₂ W ₃ O ₁₂ . Angewandte Chemie - International Edition, 2019, 58, 17255-17259.	13.8	158
25	Cooperative deformation in high-entropy alloys at ultralow temperatures. Science Advances, 2020, 6, eaax4002.	10.3	157
26	A systems approach towards the stoichiometry-controlled hetero-assembly of nanoparticles. Nature Communications, 2010, 1, 87.	12.8	152
27	A core-shell-shell nanoplatform upconverting near-infrared light at 808 nm for luminescence imaging and photodynamic therapy of cancer. Scientific Reports, 2015, 5, 10785.	3.3	150
28	Anti-counterfeiting patterns encrypted with multi-mode luminescent nanotaggants. Nanoscale, 2017, 9, 2701-2705.	5.6	149
29	Emerging functional nanomaterials for therapeutics. Journal of Materials Chemistry, 2011, 21, 13107.	6.7	148
30	Emerging Frontiers of Upconversion Nanoparticles. Trends in Chemistry, 2020, 2, 427-439.	8.5	148
31	One-pot synthesis of chitosan/LaF3:Eu3+nanocrystals for bio-applications. Nanotechnology, 2006, 17, 1527-1532.	2.6	135
32	Multiexcitonic Emission in Zero-Dimensional Cs ₂ ZrCl ₆ :Sb ³⁺ Perovskite Crystals. Journal of the American Chemical Society, 2021, 143, 17599-17606.	13.7	131
33	Core–Shell–Shell Upconversion Nanoparticles with Enhanced Emission for Wireless Optogenetic Inhibition. Nano Letters, 2018, 18, 948-956.	9.1	130
34	Facile synthesis of water-soluble LaF3â^¶ Ln3+ nanocrystals. Journal of Materials Chemistry, 2006, 16, 1031.	6.7	129
35	InP Quantum Dots: Synthesis and Lighting Applications. Small, 2020, 16, e2002454.	10.0	129
36	Reaction-Based Off–On Near-infrared Fluorescent Probe for Imaging Alkaline Phosphatase Activity in Living Cells and Mice. ACS Applied Materials & Interfaces, 2017, 9, 6796-6803.	8.0	127

#	Article	IF	CITATIONS
37	A NIR-driven photocatalyst based on α-NaYF 4 :Yb,Tm@TiO 2 core–shell structure supported on reduced graphene oxide. Applied Catalysis B: Environmental, 2016, 182, 184-192.	20.2	126
38	An upconverted photonic nonvolatile memory. Nature Communications, 2014, 5, 4720.	12.8	121
39	Plasmonic Dualâ€Enhancement and Precise Color Tuning of Gold Nanorod@SiO ₂ Coupled Core–Shell–Shell Upconversion Nanocrystals. Advanced Functional Materials, 2017, 27, 1701842.	14.9	121
40	Mechanically Excited Multicolor Luminescence in Lanthanide Ions. Advanced Materials, 2019, 31, e1807062.	21.0	120
41	Amplified Spontaneous Emission and Lasing from Lanthanide-Doped Up-Conversion Nanocrystals. ACS Nano, 2013, 7, 11420-11426.	14.6	116
42	Lanthanide-doped LiYF4 nanoparticles: Synthesis and multicolor upconversion tuning. Comptes Rendus Chimie, 2010, 13, 731-736.	0.5	114
43	A ZnS/CaZnOS Heterojunction for Efficient Mechanicalâ€ŧoâ€Optical Energy Conversion by Conduction Band Offset. Advanced Materials, 2020, 32, e1907747.	21.0	114
44	Creating Recoverable Mechanoluminescence in Piezoelectric Calcium Niobates through Pr ³⁺ Doping. Chemistry of Materials, 2016, 28, 4052-4057.	6.7	109
45	Recent Advances in Doped Mechanoluminescent Phosphors. ChemPlusChem, 2015, 80, 1209-1215.	2.8	107
46	Multicolour PEI/NaGdF4:Ce3+,Ln3+nanocrystals by single-wavelength excitation. Nanotechnology, 2007, 18, 025701.	2.6	106
47	Enhancing Multiphoton Upconversion from NaYF ₄ :Yb/Tm@NaYF ₄ Core–Shell Nanoparticles <i>via</i> the Use of Laser Cavity. ACS Nano, 2017, 11, 843-849.	14.6	106
48	A General Strategy for Ligand Exchange on Upconversion Nanoparticles. Inorganic Chemistry, 2017, 56, 872-877.	4.0	106
49	Integrating temporal and spatial control of electronic transitions for bright multiphoton upconversion. Nature Communications, 2019, 10, 1811.	12.8	104
50	Mechanical Nanosprings: Induced Coiling and Uncoiling of Ultrathin Au Nanowires. Journal of the American Chemical Society, 2010, 132, 11920-11922.	13.7	99
51	Amplifying Excitation-Power Sensitivity of Photon Upconversion in a NaYbF ₄ :Ho Nanostructure for Direct Visualization of Electromagnetic Hotspots. Journal of Physical Chemistry Letters, 2016, 7, 4916-4921.	4.6	95
52	Minimizing the Heat Effect of Photodynamic Therapy Based on Inorganic Nanocomposites Mediated by 808 nm Nearâ€Infrared Light. Small, 2017, 13, 1700038.	10.0	94
53	Lanthanide-Doped Energy Cascade Nanoparticles: Full Spectrum Emission by Single Wavelength Excitation. Chemistry of Materials, 2015, 27, 3115-3120.	6.7	92
54	Peptide-Decorated Gold Nanoparticles as Functional Nano-Capping Agent of Mesoporous Silica Container for Targeting Drug Delivery. ACS Applied Materials & Interfaces, 2016, 8, 11204-11209.	8.0	91

#	Article	IF	CITATIONS
55	Simultaneous Enhancement and Modulation of Upconversion by Thermal Stimulation in Sc ₂ Mo ₃ O ₁₂ Crystals. Journal of Physical Chemistry Letters, 2020, 11, 3020-3024.	4.6	91
56	Shedding Light on the Role of Misfit Strain in Controlling Core–Shell Nanocrystals. Advanced Materials, 2020, 32, e2004142.	21.0	89
57	Synthesis and luminescence behavior of Eu3+-doped CaF2 nanoparticles. Solid State Communications, 2005, 133, 775-779.	1.9	88
58	Up―and Downâ€Conversion Cubic Zirconia and Hafnia Nanobelts. Advanced Materials, 2008, 20, 4826-4829.	21.0	84
59	Oleylamine-Mediated Synthesis of Small NaYbF ₄ Nanoparticles with Tunable Size. Chemistry of Materials, 2019, 31, 4779-4786.	6.7	83
60	High-security anti-counterfeiting through upconversion luminescence. Materials Today Physics, 2021, 21, 100520.	6.0	83
61	NaYF ₄ :Yb,Tm nanocrystals and TiO ₂ inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin. Nanoscale, 2014, 6, 5859-5870.	5.6	79
62	Infraredâ€5ensitive Memory Based on Directâ€Grown MoS ₂ –Upconversionâ€Nanoparticle Heterostructure. Advanced Materials, 2018, 30, e1803563.	21.0	79
63	Multiplex Single-Nucleotide Polymorphism Typing by Nanoparticle-Coupled DNA-Templated Reactions. Journal of the American Chemical Society, 2009, 131, 11668-11669.	13.7	78
64	Luminescence behavior of Eu3+ doped LaF3 nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 61, 2455-2459.	3.9	75
65	Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices. Biomaterials, 2017, 142, 136-148.	11.4	74
66	Expanding the Toolbox of Inorganic Mechanoluminescence Materials. Accounts of Materials Research, 2021, 2, 364-373.	11.7	69
67	Recent advances in the synthesis and application of Yb-based fluoride upconversion nanoparticles. Inorganic Chemistry Frontiers, 2020, 7, 1067-1081.	6.0	68
68	Cleavable Molecular Beacon for Hg ²⁺ Detection Based on Phosphorothioate RNA Modifications. Analytical Chemistry, 2015, 87, 6890-6895.	6.5	67
69	Highly efficient and ultra-narrow bandwidth orange emissive carbon dots for microcavity lasers. Nanoscale, 2019, 11, 11577-11583.	5.6	66
70	Progress on Electronic and Optoelectronic Devices of 2D Layered Semiconducting Materials. Small, 2017, 13, 1604298.	10.0	65
71	Multimodal Upconversion Nanoplatform with a Mitochondria-Targeted Property for Improved Photodynamic Therapy of Cancer Cells. Inorganic Chemistry, 2016, 55, 3872-3880.	4.0	62
72	Establishing the Structural Integrity of Core–Shell Nanoparticles against Elemental Migration using Luminescent Lanthanide Probes. Angewandte Chemie - International Edition, 2015, 54, 12788-12790.	13.8	61

#	Article	IF	CITATIONS
73	Crystalline Hollow Microrods for Siteâ€Selective Enhancement of Nonlinear Photoluminescence. Angewandte Chemie - International Edition, 2017, 56, 10383-10387.	13.8	61
74	One‣tep Synthesis of Mixed Lanthanide Metal–Organic Framework Films for Sensitive Temperature Mapping. Advanced Optical Materials, 2019, 7, 1900336.	7.3	60
75	Accurate Control of Core–Shell Upconversion Nanoparticles through Anisotropic Strain Engineering. Advanced Functional Materials, 2019, 29, 1903295.	14.9	59
76	An upconversion nanoplatform for simultaneous photodynamic therapy and Pt chemotherapy to combat cisplatin resistance. Dalton Transactions, 2016, 45, 13052-13060.	3.3	58
77	Multiplexed Optogenetic Stimulation of Neurons with Spectrumâ€5elective Upconversion Nanoparticles. Advanced Healthcare Materials, 2017, 6, 1700446.	7.6	58
78	Overcoming thermal quenching in upconversion nanoparticles. Nanoscale, 2021, 13, 3454-3462.	5.6	57
79	Synthesis of Core–Shell ScF ₃ Nanoparticles for Thermal Enhancement of Upconversion. Chemistry of Materials, 2021, 33, 158-163.	6.7	55
80	Hydrothermal synthesis and luminescence behavior of rare-earth-doped NaLa(WO4)2 powders. Journal of Solid State Chemistry, 2005, 178, 825-830.	2.9	54
81	Energy Migration Upconversion in Ce(III)â€Doped Heterogeneous Coreâ^'Shellâ^'Shell Nanoparticles. Small, 2017, 13, 1701479.	10.0	51
82	Ultralarge anti-Stokes lasing through tandem upconversion. Nature Communications, 2022, 13, 1032.	12.8	51
83	Near infrared neuromorphic computing via upconversion-mediated optogenetics. Nano Energy, 2020, 67, 104262.	16.0	50
84	An upconversion nanoprobe operating in the first biological window. Journal of Materials Chemistry B, 2015, 3, 3548-3555.	5.8	49
85	Phase Separation of P3HT/PMMA Blend Film for Forming Semiconducting and Dielectric Layers in Organic Thin-Film Transistors for High-Sensitivity NO ₂ Detection. ACS Applied Materials & Interfaces, 2019, 11, 44521-44527.	8.0	49
86	Upconversion in Nanostructured Materials: From Optical Tuning to Biomedical Applications. Chemistry - an Asian Journal, 2018, 13, 373-385.	3.3	48
87	Tunable Upconversion Emissions from Lanthanide-doped Monodisperse β-NaYF ₄ Nanoparticles. Spectroscopy Letters, 2010, 43, 400-405.	1.0	47
88	Rapid Nondestructive Detection Enabled by an Ultraâ€Broadband NIR pc‣ED. Laser and Photonics Reviews, 2022, 16, .	8.7	47
89	Directional Light Emission in a Single NaYF ₄ Microcrystal via Photon Upconversion. Advanced Optical Materials, 2015, 3, 1577-1581.	7.3	45
90	Lanthanideâ€Based Luminescent Materials for Waveguide and Lasing. Chemistry - an Asian Journal, 2020, 15, 21-33.	3.3	43

#	Article	IF	CITATIONS
91	NaYbF ₄ @CaF ₂ core–satellite upconversion nanoparticles: one-pot synthesis and sensitive detection of glutathione. Nanoscale, 2018, 10, 19898-19905.	5.6	42
92	Tuning Multimode Luminescence in Lanthanide(III) and Manganese(II) Coâ€Đoped CaZnOS Crystals. Advanced Optical Materials, 2020, 8, 2000274.	7.3	42
93	Blueâ€Pumped Deep Ultraviolet Lasing from Lanthanideâ€Doped Lu ₆ O ₅ F ₈ Upconversion Nanocrystals. Advanced Optical Materials, 2020, 8, 1900968.	7.3	40
94	Using shape to turn off blinking for two-colour multiexciton emission in CdSe/CdS tetrapods. Nature Communications, 2017, 8, 15083.	12.8	37
95	Hydrothermal synthesis and luminescence behavior of lanthanide-doped GdF/sub 3/ nanoparticles. IEEE Nanotechnology Magazine, 2006, 5, 123-128.	2.0	35
96	Energy transfer-based biodetection using optical nanomaterials. Journal of Materials Chemistry B, 2018, 6, 2924-2944.	5.8	35
97	Enhancing NIR emission of Yb3+ by silver nanoclusters in oxyfluoride glass. Journal of Luminescence, 2014, 152, 222-225.	3.1	30
98	Shielding Upconversion by Surface Coating: A Study of the Emission Enhancement Factor. ChemPhysChem, 2016, 17, 766-770.	2.1	29
99	Selective Heteroepitaxial Nanocrystal Growth of Rare Earth Fluorides on Sodium Chloride: Synthesis and Density Functional Calculations. Angewandte Chemie - International Edition, 2012, 51, 8796-8799.	13.8	28
100	Phonon-modulated upconversion luminescence properties in some Er3+ and Yb3+ co-activated oxides. Journal of Materials Chemistry C, 2014, 2, 4642.	5.5	28
101	Broadband Ce(III)-Sensitized Quantum Cutting in Core–Shell Nanoparticles: Mechanistic Investigation and Photovoltaic Application. Journal of Physical Chemistry Letters, 2017, 8, 5099-5104.	4.6	28
102	Flexible and fully implantable upconversion device for wireless optogenetic stimulation of the spinal cord in behaving animals. Nanoscale, 2020, 12, 2406-2414.	5.6	27
103	Controlling X-ray-activated persistent luminescence for emerging applications. Trends in Chemistry, 2022, 4, 726-738.	8.5	27
104	An upconversion nanoplatform with extracellular pH-driven tumor-targeting ability for improved photodynamic therapy. Nanoscale, 2018, 10, 4432-4441.	5.6	26
105	Highâ€Performance Flexible Selfâ€Powered Photodetectors Utilizing Spontaneous Electron and Hole Separation in Quasiâ€2D Halide Perovskites. Small, 2021, 17, e2100442.	10.0	26
106	Bication-Mediated Quasi-2D Halide Perovskites for High-Performance Flexible Photodetectors: From Ruddlesden–Popper Type to Dion–Jacobson Type. ACS Applied Materials & Interfaces, 2020, 12, 39567-39577.	8.0	25
107	Synthesis of Mesoporous ZIFâ€8 Nanoribbons and their Conversion into Carbon Nanoribbons for Highâ€Performance Supercapacitors. Chemistry - A European Journal, 2018, 24, 11185-11192.	3.3	24
108	Remote Regulation of Optogenetic Proteins by a Magneto‣uminescence Microdevice. Advanced Functional Materials, 2021, 31, 2006357.	14.9	24

#	Article	IF	CITATIONS
109	Visibleâ€toâ€Ultraviolet Light Conversion: Materials and Applications. Advanced Photonics Research, 2021, 2, 2000213.	3.6	24
110	Interfacial jamming reinforced Pickering emulgel for arbitrary architected nanocomposite with connected nanomaterial matrix. Nature Communications, 2021, 12, 111.	12.8	24
111	Tuning NaYF4 Nanoparticles through Alkaline Earth Doping. Nanomaterials, 2013, 3, 583-591.	4.1	23
112	Tailoring lanthanide doping in perovskite CaTiO ₃ for luminescence applications. Physical Chemistry Chemical Physics, 2017, 19, 16189-16197.	2.8	22
113	NaYbF ₄ @NaYF ₄ Nanoparticles: Controlled Shell Growth and Shape-Dependent Cellular Uptake. ACS Applied Materials & Interfaces, 2021, 13, 2327-2335.	8.0	22
114	Graphitic Carbon Nanocubes Derived from ZIF-8 for Photothermal Therapy. Inorganic Chemistry, 2016, 55, 5750-5752.	4.0	21
115	Recent advances in flexible alternating current electroluminescent devices. APL Materials, 2021, 9, .	5.1	21
116	Enhancing upconversion of Nd3+ through Yb3+-mediated energy cycling towards temperature sensing. Journal of Rare Earths, 2021, 39, 1506-1511.	4.8	21
117	Reversibly Photoswitching Upconversion Nanoparticles for Superâ€5ensitive Photoacoustic Molecular Imaging. Angewandte Chemie - International Edition, 2022, 61, .	13.8	21
118	Interface synergistic effects induced multi-mode luminescence. Nano Research, 2022, 15, 4457-4465.	10.4	21
119	Inhibited local thermal effect in upconversion luminescence of YVO_4:Yb^3+, Er^3+ inverse opals. Optics Express, 2012, 20, 29673.	3.4	20
120	Influence of Plasmonic Effect on the Upconversion Emission Characteristics of NaYF ₄ Hexagonal Microrods. Inorganic Chemistry, 2018, 57, 8200-8204.	4.0	18
121	Phase transformation of ultrathin nanowires through lanthanide doping: from InOOH to rh-In2O3. Dalton Transactions, 2013, 42, 4361.	3.3	16
122	Yb ³⁺ -sensitized upconversion and downshifting luminescence in Nd ³⁺ ions through energy migration. Dalton Transactions, 2018, 47, 8581-8584.	3.3	16
123	Hydrothermal synthesis of Nd3+-doped orthoborate nanoparticles that emit in the near-infrared. Journal of Solid State Chemistry, 2004, 177, 3346-3350.	2.9	15
124	Plasmonic-doped melanin-mimic for CXCR4-targeted NIR-II photoacoustic computed tomography-guided photothermal ablation of orthotopic hepatocellular carcinoma. Acta Biomaterialia, 2021, 129, 245-257.	8.3	15
125	An erythrocyte-delivered photoactivatable oxaliplatin nanoprodrug for enhanced antitumor efficacy and immune response. Chemical Science, 2021, 12, 14353-14362.	7.4	15
126	Tuning epitaxial growth on NaYbF ₄ upconversion nanoparticles by strain management. Nanoscale, 2020, 12, 13973-13979.	5.6	14

#	Article	IF	CITATIONS
127	Recent Advances in Allâ€Inorganic Zeroâ€Dimensional Metal Halides. ChemPlusChem, 2021, 86, 1577-1585.	2.8	14
128	Synthesis of LaF ₃ : Yb ^{3+} ,Ln ^{3+} nanoparticles with improved upconversion luminescence. Journal of Experimental Nanoscience, 2007, 2, 303-311.	2.4	13
129	Sensitizing Fullâ€Spectrum Lanthanide Luminescence within a Semiconductor CaZnOS Host. Advanced Photonics Research, 2021, 2, 2000089.	3.6	13
130	lonic liquid-assisted synthesis of Yb3+-Tm3+ codoped Y7O6F9 petal shaped microcrystals with enhanced upconversion emission. Materials Research Bulletin, 2018, 103, 19-24.	5.2	12
131	Cs ⁺ -Assisted Synthesis of NaLaF ₄ Nanoparticles. Chemistry of Materials, 2019, 31, 9497-9503.	6.7	12
132	The in-situ synthesis process and luminescence behavior of a p-hydroxybenzoic acid–terbium complex in sol–gel derived host materials. Journal of Materials Chemistry, 2002, 12, 3560-3564.	6.7	11
133	Luminescence behavior of the dibenzoyl methane europium(III) complexes in sol–gel derived host materials. Journal of Luminescence, 2005, 114, 281-287.	3.1	10
134	Luminescence behavior of the europium (III) complexes with hexafluoracetylacetonate in the ORMOSIL matrices. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 100, 147-151.	3.5	9
135	Broadband multimodal emission in Sb-doped CaZnOS-layered semiconductors. Science China Materials, 2022, 65, 1329-1336.	6.3	8
136	Salt-Triggered Release of Hydrophobic Agents from Polyelectrolyte Capsules Generated via One-Step Interfacial Multilevel and Multicomponent Assembly. ACS Applied Materials & Interfaces, 2019, 11, 38353-38360.	8.0	7
137	Doubly Doped BaZnOS Microcrystals for Multicolor Luminescence Switching. Advanced Optical Materials, 2022, 10, 2102430.	7.3	7
138	Recent advances in cellular optogenetics for photomedicine. Advanced Drug Delivery Reviews, 2022, 188, 114457.	13.7	7
139	The in situ synthesis process and luminescence behavior of 2-pyridinecarboxylic acid europium complexes in the sol–gel derived host materials. Materials Chemistry and Physics, 2003, 82, 38-43.	4.0	6
140	Lanthanide-Doped Nanoparticles. , 2014, , 121-160.		6
141	Crystalline Hollow Microrods for Siteâ€Selective Enhancement of Nonlinear Photoluminescence. Angewandte Chemie, 2017, 129, 10519-10523.	2.0	6
142	Optical tuning in lanthanide-based nanostructures. Journal Physics D: Applied Physics, 2020, 53, 053002.	2.8	6
143	Thermal Enhancement of Upconversion by Negative Lattice Expansion in Orthorhombic Yb ₂ W ₃ O ₁₂ . Angewandte Chemie, 2019, 131, 17415-17419.	2.0	5

#	Article	IF	CITATIONS
145	Reversibly Photoswitching Upconversion Nanoparticles for Superâ€Sensitive Photoacoustic Molecular Imaging. Angewandte Chemie, 2022, 134, .	2.0	5
146	3D Upconversion Barcodes for Combinatory Wireless Neuromodulation in Behaving Animals. Advanced Healthcare Materials, 2022, 11, e2200304.	7.6	5
147	Rare-Earth Doped Upconversion Nanophosphors. , 2011, , 359-384.		4
148	Near-infrared photon-excited energy transfer in platinum(<scp>ii</scp>)-based supramolecular polymers assisted by upconverting nanoparticles. Chemical Communications, 2021, 57, 1927-1930.	4.1	3
149	Lanthanide-Doped Core–Shell Upconversion Nanophosphors. , 2016, , 289-309.		2
150	Acid/alkali-resistant, stimuli-responsive, and shape-remodeled emulsion droplet assemblies with Ag nanocrystals as binding agents. Chemical Engineering Journal, 2021, 407, 127092.	12.7	2
151	An All-Nanocrystal Biosensing System for In Vitro Detection of STAT3 Oligonucleotides. Molecules, 2017, 22, 1085.	3.8	1
152	Continuous-wave lasing from quasi-2D perovskites. Science Bulletin, 2021, 66, 521-523.	9.0	1
153	Microstructure design and energy transfer in Gd2(WO4)3: Yb3+/Er3+ phosphors. Journal of the Korean Physical Society, 2021, 78, 796-802.	0.7	1
154	Innentitelbild: Crystalline Hollow Microrods for Site‧elective Enhancement of Nonlinear Photoluminescence (Angew. Chem. 35/2017). Angewandte Chemie, 2017, 129, 10384-10384.	2.0	0
155	Upconversion luminescence in lanthanide-doped nanoparticles. , 2022, , .		Ο