
Surinder K Batra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2141280/publications.pdf Version: 2024-02-01

SUDINDED K RATDA

#	Article	IF	CITATIONS
1	Tumour exosome integrins determine organotropic metastasis. Nature, 2015, 527, 329-335.	13.7	3,688
2	Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nature Cell Biology, 2015, 17, 816-826.	4.6	2,064
3	Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell, 2020, 182, 1044-1061.e18.	13.5	691
4	Targeting the EGFR signaling pathway in cancer therapy. Expert Opinion on Therapeutic Targets, 2012, 16, 15-31.	1.5	688
5	Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biology, 2017, 18, 92.	3.8	375
6	Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Letters, 2013, 335, 9-18.	3.2	369
7	The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2012, 1826, 129-169.	3.3	338
8	Hypoxiaâ€inducing factors as master regulators of stemness properties and altered metabolism of cancer―and metastasisâ€initiating cells. Journal of Cellular and Molecular Medicine, 2013, 17, 30-54.	1.6	282
9	Concise Review: Recent Advances on the Significance of Stem Cells in Tissue Regeneration and Cancer Therapies. Stem Cells, 2006, 24, 2319-2345.	1.4	259
10	Mucins in pancreatic cancer and its microenvironment. Nature Reviews Gastroenterology and Hepatology, 2013, 10, 607-620.	8.2	232
11	Inhibition of MUC4 Expression Suppresses Pancreatic Tumor Cell Growth and Metastasis. Cancer Research, 2004, 64, 622-630.	0.4	224
12	Structure, evolution, and biology of the MUC4 mucin. FASEB Journal, 2008, 22, 966-981.	0.2	223
13	Detection of the Potential Pancreatic Cancer Marker MUC4 in Serum Using Surface-Enhanced Raman Scattering. Analytical Chemistry, 2011, 83, 2554-2561.	3.2	223
14	Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments. Molecular Cancer, 2022, 21, 79.	7.9	219
15	MUC4 Expression Increases Progressively in Pancreatic Intraepithelial Neoplasia. American Journal of Clinical Pathology, 2002, 117, 791-796.	0.4	215
16	Early diagnosis of pancreatic cancer: challenges and new developments. Biomarkers in Medicine, 2012, 6, 597-612.	0.6	201
17	The human PAF complex coordinates transcription with events downstream of RNA synthesis. Genes and Development, 2005, 19, 1668-1673.	2.7	192
18	Pharmacokinetics and biodistribution of genetically engineered antibodies. Current Opinion in Biotechnology, 2002, 13, 603-608.	3.3	189

#	Article	IF	CITATIONS
19	Divergent molecular mechanisms underlying the pleiotropic functions of macrophage inhibitory cytokineâ€l in cancer. Journal of Cellular Physiology, 2010, 224, 626-635.	2.0	188
20	Recent Progress on Tissue-Resident Adult Stem Cell Biology and Their Therapeutic Implications. Stem Cell Reviews and Reports, 2008, 4, 27-49.	5.6	170
21	Establishment and characterization of androgen-independent human prostate cancer LNCaP cell model. Prostate, 2002, 50, 222-235.	1.2	166
22	Multifaceted Role of Neuropilins in the Immune System: Potential Targets for Immunotherapy. Frontiers in Immunology, 2017, 8, 1228.	2.2	165
23	Regulation of mucin expression: Mechanistic aspects and implications for cancer and inflammatory diseases. Biochimica Et Biophysica Acta: Reviews on Cancer, 2006, 1765, 189-222.	3.3	159
24	MUC4 Mucin Potentiates Pancreatic Tumor Cell Proliferation, Survival, and Invasive Properties and Interferes with Its Interaction to Extracellular Matrix Proteins. Molecular Cancer Research, 2007, 5, 309-320.	1.5	155
25	Cancer-associated mucins: role in immune modulation and metastasis. Cancer and Metastasis Reviews, 2019, 38, 223-236.	2.7	152
26	MUC4 Mucin Interacts with and Stabilizes the HER2 Oncoprotein in Human Pancreatic Cancer Cells. Cancer Research, 2008, 68, 2065-2070.	0.4	148
27	Marital Status and Survival in Pancreatic Cancer Patients: A SEER Based Analysis. PLoS ONE, 2011, 6, e21052.	1.1	147
28	MUC16 as a novel target for cancer therapy. Expert Opinion on Therapeutic Targets, 2018, 22, 675-686.	1.5	142
29	Graviola: A novel promising natural-derived drug that inhibits tumorigenicity and metastasis of pancreatic cancer cells in vitro and in vivo through altering cell metabolism. Cancer Letters, 2012, 323, 29-40.	3.2	139
30	Mucin-interacting proteins: from function to therapeutics. Trends in Biochemical Sciences, 2010, 35, 236-245.	3.7	137
31	Chronic Pancreatic Inflammation Induced by Environmental Tobacco Smoke Inhalation in Rats. American Journal of Gastroenterology, 2006, 101, 148-159.	0.2	134
32	Aberrant expression of MUC4 in ovarian carcinoma: diagnostic significance alone and in combination with MUC1 and MUC16 (CA125). Modern Pathology, 2006, 19, 1386-1394.	2.9	133
33	Recent advances on multiple tumorigenic cascades involved in prostatic cancer progression and targeting therapies. Carcinogenesis, 2005, 27, 1-22.	1.3	130
34	Emerging Roles of MUC4 in Cancer: A Novel Target for Diagnosis and Therapy: Figure 1 Cancer Research, 2007, 67, 433-436.	0.4	130
35	Current status of mucins in the diagnosis and therapy of cancer. BioFactors, 2009, 35, 509-527.	2.6	128
36	Expression profile of differentially-regulated genes during progression of androgen-independent growth in human prostate cancer cells. Carcinogenesis, 2002, 23, 967-976.	1.3	121

#	Article	IF	CITATIONS
37	MUC4 is a novel prognostic factor of intrahepatic cholangiocarcinoma-mass forming type. Hepatology, 2004, 39, 220-229.	3.6	121
38	Biomarkers in Diagnosis of Pancreatic Carcinoma in Fine-Needle Aspirates. American Journal of Clinical Pathology, 2006, 126, 572-579.	0.4	121
39	Effects of Thymoquinone in the Expression of Mucin 4 in Pancreatic Cancer Cells: Implications for the Development of Novel Cancer Therapies. Molecular Cancer Therapeutics, 2010, 9, 1419-1431.	1.9	120
40	Engineering antibodies for clinical applications. Trends in Biotechnology, 2007, 25, 307-316.	4.9	117
41	Concise Review: Current Status of Three-Dimensional Organoids as Preclinical Models. Stem Cells, 2018, 36, 1329-1340.	1.4	116
42	Label-free characterization of exosome via surface enhanced Raman spectroscopy for the early detection of pancreatic cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 16, 88-96.	1.7	116
43	Recent trends in antibody-based oncologic imaging. Cancer Letters, 2012, 315, 97-111.	3.2	115
44	Emerging Roles of Electrospun Nanofibers in Cancer Research. Advanced Healthcare Materials, 2018, 7, e1701024.	3.9	114
45	Pathobiological Implications of MUC16 Expression in Pancreatic Cancer. PLoS ONE, 2011, 6, e26839.	1.1	113
46	Potential applications of curcumin and its novel synthetic analogs and nanotechnology-based formulations in cancer prevention and therapy. Chinese Medicine, 2011, 6, 31.	1.6	110
47	Mucins in Lung Cancer: Diagnostic, Prognostic, and Therapeutic Implications. Journal of Thoracic Oncology, 2015, 10, 19-27.	0.5	110
48	A Combination of MUC5AC and CA19-9 Improves the Diagnosis of Pancreatic Cancer: A Multicenter Study. American Journal of Gastroenterology, 2017, 112, 172-183.	0.2	109
49	Novel Pancreatic Cancer Cell Lines Derived from Genetically Engineered Mouse Models of Spontaneous Pancreatic Adenocarcinoma: Applications in Diagnosis and Therapy. PLoS ONE, 2013, 8, e80580.	1.1	109
50	Frequent Deregulations in the Hedgehog Signaling Network and Cross-Talks with the Epidermal Growth Factor Receptor Pathway Involved in Cancer Progression and Targeted Therapies. Pharmacological Reviews, 2010, 62, 497-524.	7.1	105
51	Mucins in the pathogenesis of breast cancer: Implications in diagnosis, prognosis and therapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2011, 1815, 224-240.	3.3	98
52	Transcriptional Profiling of Peripheral Blood Mononuclear Cells in Pancreatic Cancer Patients Identifies Novel Genes with Potential Diagnostic Utility. PLoS ONE, 2011, 6, e17014.	1.1	98
53	Clinical potential of mucins in diagnosis, prognosis, and therapy of ovarian cancer. Lancet Oncology, The, 2008, 9, 1076-1085.	5.1	97
54	MUC16: molecular analysis and its functional implications in benign and malignant conditions. FASEB Journal, 2014, 28, 4183-4199.	0.2	96

#	Article	IF	CITATIONS
55	Pancreatic Tumor Microenvironment Factor Promotes Cancer Stemness via SPP1–CD44 Axis. Gastroenterology, 2021, 161, 1998-2013.e7.	0.6	95
56	Alternative splicing generates a family of putative secreted and membrane-associated MUC4 mucins. FEBS Journal, 2000, 267, 4536-4544.	0.2	94
57	Withaferin A Alone and in Combination with Cisplatin Suppresses Growth and Metastasis of Ovarian Cancer by Targeting Putative Cancer Stem Cells. PLoS ONE, 2014, 9, e107596.	1.1	94
58	Aberrant Expression of MUC3 and MUC4 Membrane-Associated Mucins and Sialyl Lex Antigen in Pancreatic Intraepithelial Neoplasia. Pancreas, 2003, 26, e48-e54.	0.5	92
59	Recent Advances on the Molecular Mechanisms Involved in Pancreatic Cancer Progression and Therapies. Pancreas, 2005, 31, 301-316.	0.5	91
60	Aberrant expression of transmembrane mucins, MUC1 and MUC4, in human prostate carcinomas. Prostate, 2006, 66, 421-429.	1.2	90
61	Clinical implications of miRNAs in the pathogenesis, diagnosis and therapy of pancreatic cancer. Advanced Drug Delivery Reviews, 2015, 81, 16-33.	6.6	89
62	Genome-wide expression profiling reveals transcriptomic variation and perturbed gene networks in androgen-dependent and androgen-independent prostate cancer cells. Cancer Letters, 2008, 259, 28-38.	3.2	88
63	FAK and paxillin, two potential targets in pancreatic cancer. Oncotarget, 2016, 7, 31586-31601.	0.8	88
64	Combined targeting of epidermal growth factor receptor and hedgehog signaling by gefitinib and cyclopamine cooperatively improves the cytotoxic effects of docetaxel on metastatic prostate cancer cells. Molecular Cancer Therapeutics, 2007, 6, 967-978.	1.9	86
65	Optimization of Radioimmunotherapy of Solid Tumors: Biological Impediments and Their Modulation. Clinical Cancer Research, 2007, 13, 1374-1382.	3.2	86
66	MicroRNA in pancreatic cancer: Pathological, diagnostic and therapeutic implications. Cancer Letters, 2010, 292, 8-16.	3.2	86
67	Focal adhesion kinase a potential therapeutic target for pancreatic cancer and malignant pleural mesothelioma. Cancer Biology and Therapy, 2018, 19, 316-327.	1.5	86
68	Relative position of the hexahistidine tag effects binding properties of a tumor-associated single-chain Fv construct. Biochimica Et Biophysica Acta - General Subjects, 2000, 1523, 13-20.	1.1	85
69	Molecular implications of MUC5AC-CD44 axis in colorectal cancer progression and chemoresistance. Molecular Cancer, 2020, 19, 37.	7.9	85
70	Cytotoxic effects induced by a combination of cyclopamine and gefitinib, the selective hedgehog and epidermal growth factor receptor signaling inhibitors, in prostate cancer cells. International Journal of Cancer, 2006, 118, 1022-1031.	2.3	84
71	MUC4 Is a Novel Prognostic Factor of Extrahepatic Bile Duct Carcinoma. Clinical Cancer Research, 2006, 12, 4257-4264.	3.2	84
72	Understanding the Unique Attributes of MUC16 (CA125): Potential Implications in Targeted Therapy. Cancer Research, 2015, 75, 4669-4674.	0.4	84

#	Article	IF	CITATIONS
73	Penetratin Improves Tumor Retention of Single-Chain Antibodies: A Novel Step toward Optimization of Radioimmunotherapy of Solid Tumors. Cancer Research, 2005, 65, 7840-7846.	0.4	83
74	Mucin-based Targeted Pancreatic Cancer Therapy. Current Pharmaceutical Design, 2012, 18, 2472-2481.	0.9	83
75	Pancreatic cancer associated with obesity and diabetes: an alternative approach for its targeting. Journal of Experimental and Clinical Cancer Research, 2018, 37, 319.	3.5	81
76	Afatinib and Temozolomide combination inhibits tumorigenesis by targeting EGFRvIII-cMet signaling in glioblastoma cells. Journal of Experimental and Clinical Cancer Research, 2019, 38, 266.	3.5	81
77	Surface-Enhanced Raman Scattering-Based Immunoassay Technologies for Detection of Disease Biomarkers. Biosensors, 2017, 7, 7.	2.3	79
78	Unraveling the journey of cancer stem cells from origin to metastasis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 50-63.	3.3	78
79	Amyloid precursor protein and amyloid precursor-like protein 2 in cancer. Oncotarget, 2016, 7, 19430-19444.	0.8	78
80	Guggulsterone decreases proliferation and metastatic behavior of pancreatic cancer cells by modulating JAK/STAT and Src/FAK signaling. Cancer Letters, 2013, 341, 166-177.	3.2	77
81	Emerging trends in the immunotherapy of pancreatic cancer. Cancer Letters, 2018, 417, 35-46.	3.2	77
82	Natural products: a hope for glioblastoma patients. Oncotarget, 2018, 9, 22194-22219.	0.8	77
83	Generation and Characterization of Anti-MUC4 Monoclonal Antibodies Reactive with Normal and Cancer Cells in Humans. Journal of Histochemistry and Cytochemistry, 2004, 52, 253-261.	1.3	76
84	MUC4 potentiates invasion and metastasis of pancreatic cancer cells through stabilization of fibroblast growth factor receptor 1. Carcinogenesis, 2012, 33, 1953-1964.	1.3	76
85	Recent insights into the molecular mechanisms involved in aging and the malignant transformation of adult stem/progenitor cells and their therapeutic implications. Ageing Research Reviews, 2009, 8, 94-112.	5.0	75
86	Desmoplasia in pancreatic ductal adenocarcinoma: insight into pathological function and therapeutic potential. Genes and Cancer, 2018, 9, 78-86.	0.6	75
87	Protocol for Apoptosis Assay by Flow Cytometry Using Annexin V Staining Method. Bio-protocol, 2013, 3, .	0.2	75
88	Current status of molecular markers for early detection of sporadic pancreatic cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2011, 1815, 44-64.	3.3	74
89	Molecular Biomarkers of Cancer Stem/Progenitor Cells Associated with Progression, Metastases, and Treatment Resistance of Aggressive Cancers. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 234-254.	1.1	74
90	Codelivery of Small Molecule Hedgehog Inhibitor and miRNA for Treating Pancreatic Cancer. Molecular Pharmaceutics, 2015, 12, 1289-1298.	2.3	74

#	Article	IF	CITATIONS
91	MUC4 down-regulation reverses chemoresistance of pancreatic cancer stem/progenitor cells and their progenies. Cancer Letters, 2010, 295, 69-84.	3.2	73
92	Glycosylation of Cancer Stem Cells: Function in Stemness, Tumorigenesis, and Metastasis. Neoplasia, 2018, 20, 813-825.	2.3	72
93	Macrophage-Derived Neuropilin-2 Exhibits Novel Tumor-Promoting Functions. Cancer Research, 2018, 78, 5600-5617.	0.4	72
94	MicroRNAs (miRNAs) as Biomarker(s) for Prognosis and Diagnosis of Gastrointestinal (GI) Cancers. Current Pharmaceutical Design, 2014, 20, 5287-5297.	0.9	71
95	The tumor microenvironment as driver of stemness and therapeutic resistance in breast cancer: New challenges and therapeutic opportunities. Cellular Oncology (Dordrecht), 2021, 44, 1209-1229.	2.1	71
96	Cigarette Smoke Induces Stem Cell Features of Pancreatic Cancer Cells via PAF1. Gastroenterology, 2018, 155, 892-908.e6.	0.6	70
97	Radiomics in stratification of pancreatic cystic lesions: Machine learning in action. Cancer Letters, 2020, 469, 228-237.	3.2	70
98	Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation. Genome Biology, 2019, 20, 171.	3.8	69
99	Mucins and associated glycan signatures in colon adenoma–carcinoma sequence: Prospective pathological implication(s) for early diagnosis of colon cancer. Cancer Letters, 2016, 374, 304-314.	3.2	68
100	Tumor microenvironment: an evil nexus promoting aggressive head and neck squamous cell carcinoma and avenue for targeted therapy. Signal Transduction and Targeted Therapy, 2021, 6, 12.	7.1	68
101	Current status of the molecular genetics of human prostatic adenocarcinomas. International Journal of Cancer, 2003, 103, 285-293.	2.3	67
102	Human MUC4 Mucin cDNA and Its Variants in Pancreatic Carcinoma. Journal of Biochemistry, 2000, 128, 233-243.	0.9	66
103	Transdifferentiation of Human Islet Cells in a Long-term Culture. Pancreas, 2001, 23, 157-171.	0.5	66
104	Prostate-derived factor as a paracrine and autocrine factor for the proliferation of androgen receptor-positive human prostate cancer cells. Prostate, 2007, 67, 557-571.	1.2	66
105	Carboxyl-terminal domain of MUC16 imparts tumorigenic and metastatic functions through nuclear translocation of JAK2 to pancreatic cancer cells. Oncotarget, 2015, 6, 5772-5787.	0.8	66
106	Retinoic Acid-dependent Transforming Growth Factor-β2-mediated Induction of MUC4 Mucin Expression in Human Pancreatic Tumor Cells Follows Retinoic Acid Receptor-α Signaling Pathway. Journal of Biological Chemistry, 2000, 275, 33929-33936.	1.6	65
107	Mucin (Muc) expression during pancreatic cancer progression in spontaneous mouse model: potential implications for diagnosis and therapy. Journal of Hematology and Oncology, 2012, 5, 68.	6.9	65
108	Smoking and microRNA dysregulation: a cancerous combination. Trends in Molecular Medicine, 2014, 20, 36-47.	3.5	65

#	Article	IF	CITATIONS
109	MUC16 contributes to the metastasis of pancreatic ductal adenocarcinoma through focal adhesion mediated signaling mechanism. Genes and Cancer, 2016, 7, 110-124.	0.6	65
110	Biological determinants of radioresistance and their remediation in pancreatic cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1868, 69-92.	3.3	65
111	MUC16 Regulates TSPYL5 for Lung Cancer Cell Growth and Chemoresistance by Suppressing p53. Clinical Cancer Research, 2017, 23, 3906-3917.	3.2	64
112	Dysregulated expression of MIC-1/PDF in human prostate tumor cells. Biochemical and Biophysical Research Communications, 2003, 305, 598-604.	1.0	63
113	Characterization of stem cell and cancer stem cell populations in ovary and ovarian tumors. Journal of Ovarian Research, 2018, 11, 69.	1.3	63
114	A role for human MUC4 mucin gene, the ErbB2 ligand, as a target of TGF-β in pancreatic carcinogenesis. Oncogene, 2004, 23, 5729-5738.	2.6	61
115	Ovarian cancer: emerging concept on cancer stem cells. Journal of Ovarian Research, 2008, 1, 4.	1.3	61
116	Pathobiological Implications of MUC16/CA125 Expression in Intrahepatic Cholangiocarcinoma-Mass Forming Type. Pathobiology, 2012, 79, 101-106.	1.9	61
117	MUC16-mediated activation of mTOR and c-MYC reprograms pancreatic cancer metabolism. Oncotarget, 2015, 6, 19118-19131.	0.8	61
118	MUC4 mucin- a therapeutic target for pancreatic ductal adenocarcinoma. Expert Opinion on Therapeutic Targets, 2017, 21, 657-669.	1.5	61
119	Diagnostic value of MUC4 immunostaining in distinguishing epithelial mesothelioma and lung adenocarcinoma. Modern Pathology, 2004, 17, 150-157.	2.9	60
120	MUC4 Overexpression Augments Cell Migration and Metastasis through EGFR Family Proteins in Triple Negative Breast Cancer Cells. PLoS ONE, 2013, 8, e54455.	1.1	60
121	MUC4 expression correlates with poor prognosis in small-sized lung adenocarcinoma. Lung Cancer, 2007, 55, 195-203.	0.9	59
122	Disruption of C1galt1 Gene Promotes Development and Metastasis of Pancreatic Adenocarcinomas in Mice. Gastroenterology, 2018, 155, 1608-1624.	0.6	59
123	MASTL induces Colon Cancer progression and Chemoresistance by promoting Wnt/β-catenin signaling. Molecular Cancer, 2018, 17, 111.	7.9	59
124	What is the origin of pancreatic adenocarcinoma?. Molecular Cancer, 2003, 2, 13.	7.9	58
125	Functions of tumorigenic and migrating cancer progenitor cells in cancer progression and metastasis and their therapeutic implications. Cancer and Metastasis Reviews, 2007, 26, 203-214.	2.7	58
126	High gene expression of semaphorin 5A in pancreatic cancer is associated with tumor growth, invasion and metastasis. International Journal of Cancer, 2010, 127, 1373-1383.	2.3	58

#	Article	IF	CITATIONS
127	Cytotoxic Effects Induced by Docetaxel, Gefitinib, and Cyclopamine on Side Population and Nonside Population Cell Fractions from Human Invasive Prostate Cancer Cells. Molecular Cancer Therapeutics, 2010, 9, 617-630.	1.9	58
128	Pathobiological implications of mucin glycans in cancer: Sweet poison and novel targets. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1856, 211-225.	3.3	58
129	PD-L1, inflammation, non-coding RNAs, and neuroblastoma: Immuno-oncology perspective. Seminars in Cancer Biology, 2018, 52, 53-65.	4.3	58
130	Expression of intestinal MUC17 membrane-bound mucin in inflammatory and neoplastic diseases of the colon. Journal of Clinical Pathology, 2010, 63, 702-707.	1.0	57
131	Functions of Normal and Malignant Prostatic Stem/Progenitor Cells in Tissue Regeneration and Cancer Progression and Novel Targeting Therapies. Endocrine Reviews, 2008, 29, 234-252.	8.9	54
132	MUC4, a Multifunctional Transmembrane Glycoprotein, Induces Oncogenic Transformation of NIH3T3 Mouse Fibroblast Cells. Cancer Research, 2008, 68, 9231-9238.	0.4	54
133	Novel Interaction of MUC4 and Galectin: Potential Pathobiological Implications for Metastasis in Lethal Pancreatic Cancer. Clinical Cancer Research, 2011, 17, 267-274.	3.2	54
134	Predicted Prognosis of Patients with Pancreatic Cancer by Machine Learning. Clinical Cancer Research, 2020, 26, 2411-2421.	3.2	54
135	microRNAs Orchestrate Pathophysiology of Breast Cancer Brain Metastasis: Advances in Therapy. Molecular Cancer, 2020, 19, 29.	7.9	53
136	Advances in cancer cachexia: Intersection between affected organs, mediators, and pharmacological interventions. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188359.	3.3	53
137	Metabolic programming of distinct cancer stem cells promotes metastasis of pancreatic ductal adenocarcinoma. Oncogene, 2021, 40, 215-231.	2.6	53
138	RNA-based therapies: A cog in the wheel of lung cancer defense. Molecular Cancer, 2021, 20, 54.	7.9	53
139	Characterization of Human Mucin MUC17. Journal of Biological Chemistry, 2006, 281, 23676-23685.	1.6	52
140	Elevated Serum Neutrophil Gelatinase-Associated Lipocalin Is an Early Predictor of Severity and Outcome in Acute Pancreatitis. American Journal of Gastroenterology, 2010, 105, 2050-2059.	0.2	52
141	Frequent Gene Products and Molecular Pathways Altered in Prostate Cancer- and Metastasis-Initiating Cells and Their Progenies and Novel Promising Multitargeted Therapies. Molecular Medicine, 2011, 17, 949-964.	1.9	52
142	Mucins and Wnt/β-catenin signaling in gastrointestinal cancers: an unholy nexus. Carcinogenesis, 2016, 37, 223-232.	1.3	52
143	A Systematic Review on the Implications of O-linked Glycan Branching and Truncating Enzymes on Cancer Progression and Metastasis. Cells, 2020, 9, 446.	1.8	52
144	PR55α Subunit of Protein Phosphatase 2A Supports the Tumorigenic and Metastatic Potential of Pancreatic Cancer Cells by Sustaining Hyperactive Oncogenic Signaling. Cancer Research, 2016, 76, 2243-2253.	0.4	51

#	Article	IF	CITATIONS
145	Potentials of Plasma NGAL and MIC-1 as Biomarker(s) in the Diagnosis of Lethal Pancreatic Cancer. PLoS ONE, 2013, 8, e55171.	1.1	50
146	Aberrant methylation of <i>MUC1</i> and <i>MUC4</i> promoters are potential prognostic biomarkers for pancreatic ductal adenocarcinomas. Oncotarget, 0, 7, 42553-42565.	0.8	50
147	Neuropilin-2 Regulates Endosome Maturation and EGFR Trafficking to Support Cancer Cell Pathobiology. Cancer Research, 2016, 76, 418-428.	0.4	49
148	MUC4 and MUC1 Expression in Adenocarcinoma of the Stomach Correlates with Vessel Invasion and Lymph Node Metastasis: An Immunohistochemical Study of Early Gastric Cancer. PLoS ONE, 2012, 7, e49251.	1.1	49
149	Nanocarriers for pancreatic cancer imaging, treatments, and immunotherapies. Theranostics, 2022, 12, 1030-1060.	4.6	49
150	RNA Polymerase II Associated Factor 1/PD2 Maintains Self-Renewal by Its Interaction with Oct3/4 in Mouse Embryonic Stem Cells. Stem Cells, 2009, 27, 3001-3011.	1.4	48
151	Pancreatic Cancer Metastasis: Are we being Pre-EMTed?. Current Pharmaceutical Design, 2015, 21, 1249-1255.	0.9	48
152	Pathobiological Implications of the Expression of EGFR, pAkt, NF-κB and MIC-1 in Prostate Cancer Stem Cells and Their Progenies. PLoS ONE, 2012, 7, e31919.	1.1	46
153	Altered gene products involved in the malignant reprogramming of cancer stem/progenitor cells and multitargeted therapies. Molecular Aspects of Medicine, 2014, 39, 3-32.	2.7	46
154	Changes in microRNA (miRNA) expression during pancreatic cancer development and progression in a genetically engineered KrasG12D;Pdx1-Cre mouse (KC) model. Oncotarget, 2015, 6, 40295-40309.	0.8	46
155	Frequent HIN-1 Promoter Methylation and Lack of Expression in Multiple Human Tumor Types. Molecular Cancer Research, 2004, 2, 489-494.	1.5	46
156	Androgen Receptor, Although Not a Specific Marker For, Is a Novel Target to Suppress Glioma Stem Cells as a Therapeutic Strategy for Glioblastoma. Frontiers in Oncology, 2021, 11, 616625.	1.3	45
157	Emerging Role of Mucins in Epithelial to Mesenchymal Transition. Current Cancer Drug Targets, 2013, 13, 945-956.	0.8	45
158	MUC4 stabilizes HER2 expression and maintains the cancer stem cell population in ovarian cancer cells. Journal of Ovarian Research, 2011, 4, 7.	1.3	44
159	Loss of N-acetylgalactosaminyltransferase 3 in poorly differentiated pancreatic cancer: augmented aggressiveness and aberrant ErbB family glycosylation. British Journal of Cancer, 2016, 114, 1376-1386.	2.9	43
160	CXCR2 signaling promotes secretory cancerâ€associated fibroblasts in pancreatic ductal adenocarcinoma. FASEB Journal, 2020, 34, 9405-9418.	0.2	43
161	Role of mucins in the skin during benign and malignant conditions. Cancer Letters, 2011, 301, 127-141.	3.2	42
162	Membrane proximal ectodomain cleavage of MUC16 occurs in the acidifyingGolgi/post-Golgi compartments. Scientific Reports, 2015, 5, 9759.	1.6	42

#	Article	IF	CITATIONS
163	MicroRNA regulation of K-Ras in pancreatic cancer and opportunities for therapeutic intervention. Seminars in Cancer Biology, 2019, 54, 63-71.	4.3	42
164	Targeting EGF-receptor(s) - STAT1 axis attenuates tumor growth and metastasis through downregulation of MUC4 mucin in human pancreatic cancer. Oncotarget, 2015, 6, 5164-5181.	0.8	42
165	MUC4: A novel prognostic factor of oral squamous cell carcinoma. International Journal of Cancer, 2012, 130, 1768-1776.	2.3	41
166	TLR4 activation by lipopolysaccharide confers survival advantage to growth factor deprived prostate cancer cells. Prostate, 2015, 75, 1020-1033.	1.2	41
167	FDPS cooperates with PTEN loss to promote prostate cancer progression through modulation of small GTPases/AKT axis. Oncogene, 2019, 38, 5265-5280.	2.6	41
168	MUCIN-4 (MUC4) is a novel tumor antigen in pancreatic cancer immunotherapy. Seminars in Immunology, 2020, 47, 101391.	2.7	41
169	Selective inhibition of stemness through EGFR/FOXA2/SOX9 axis reduces pancreatic cancer metastasis. Oncogene, 2021, 40, 848-862.	2.6	41
170	Afatinib radiosensitizes head and neck squamous cell carcinoma cells by targeting cancer stem cells. Oncotarget, 2017, 8, 20961-20973.	0.8	41
171	Synergistic induction of the MUC4 mucin gene by interferon-Î ³ and retinoic acid in human pancreatic tumour cells involves a reprogramming of signalling pathways. Oncogene, 2005, 24, 6143-6154.	2.6	40
172	Sildenafil (Viagra) sensitizes prostate cancer cells to doxorubicin-mediated apoptosis through CD95. Oncotarget, 2016, 7, 4399-4413.	0.8	40
173	Ramifications of secreted mucin MUC5AC in malignant journey: a holistic view. Carcinogenesis, 2018, 39, 633-651.	1.3	40
174	Interplay between Smoking-induced Genotoxicity and Altered Signaling in Pancreatic Carcinogenesis. Carcinogenesis, 2012, 33, 1617-1628.	1.3	39
175	Altered Expression of Transmembrane Mucins, MUC1 and MUC4, in Bladder Cancer: Pathological Implications in Diagnosis. PLoS ONE, 2014, 9, e92742.	1.1	39
176	Secretory Mucin 5AC Promotes Neoplastic Progression by Augmenting KLF4-Mediated Pancreatic Cancer Cell Stemness. Cancer Research, 2021, 81, 91-102.	0.4	39
177	CXCR2 signaling regulates <i>KRAS(G12D)</i> -induced autocrine growth of pancreatic cancer. Oncotarget, 2016, 7, 7280-7296.	0.8	39
178	MUC1 Mucin mRNA Expression in Cultured Human Nasal and Bronchial Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 1992, 6, 516-520.	1.4	38
179	New promising drug targets in cancer- and metastasis-initiating cells. Drug Discovery Today, 2010, 15, 354-364.	3.2	38
180	Pathobiological Implications of MUC4 in Non–Small-Cell Lung Cancer. Journal of Thoracic Oncology, 2013, 8, 398-407.	0.5	38

#	Article	IF	CITATIONS
181	MicroRNA-200c Modulates the Expression of MUC4 and MUC16 by Directly Targeting Their Coding Sequences in Human Pancreatic Cancer. PLoS ONE, 2013, 8, e73356.	1.1	38
182	Nano-immunoassay with improved performance for detection of cancer biomarkers. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 167-173.	1.7	38
183	Dual delivery nanoscale device for miR-345 and gemcitabine co-delivery to treat pancreatic cancer. Journal of Controlled Release, 2019, 294, 237-246.	4.8	38
184	Prospects of miRNA-Based Therapy for Pancreatic Cancer. Current Drug Targets, 2013, 14, 1101-1109.	1.0	38
185	Pathophysiological role of growth differentiation factor 15 (GDF15) in obesity, cancer, and cachexia. Cytokine and Growth Factor Reviews, 2022, 64, 71-83.	3.2	38
186	Effects of humanization and gene shuffling on immunogenicity and antigen binding of anti-tag-72 single-chain Fvs. International Journal of Cancer, 2001, 94, 717-726.	2.3	37
187	Holy Basil leaf extract decreases tumorigenicity and metastasis of aggressive human pancreatic cancer cells in vitro and in vivo: Potential role in therapy. Cancer Letters, 2013, 336, 270-280.	3.2	37
188	Advanced pancreatic cancer: a meta-analysis of clinical trials over thirty years. Oncotarget, 2018, 9, 19396-19405.	0.8	37
189	Mechanistic and Functional Shades of Mucins and Associated Glycans in Colon Cancer. Cancers, 2020, 12, 649.	1.7	37
190	A concise review on the current understanding of pancreatic cancer stem cells. Journal of Cancer Stem Cell Research, 2014, 2, 1.	1.1	37
191	Inhibition of hedgehog signaling improves the anti-carcinogenic effects of docetaxel in prostate cancer. Oncotarget, 2015, 6, 3887-3903.	0.8	37
192	The in vivo characteristics of genetically engineered divalent and tetravalent single-chain antibody constructs. Nuclear Medicine and Biology, 2005, 32, 157-164.	0.3	36
193	Expression of TAG-72 in ovarian cancer and its correlation with tumor stage and patient prognosis. Cancer Letters, 2007, 251, 247-257.	3.2	36
194	MUC4-Mediated Regulation of Acute Phase Protein Lipocalin 2 through HER2/AKT/NF-κB Signaling in Pancreatic Cancer. Clinical Cancer Research, 2014, 20, 688-700.	3.2	36
195	Novel role of O-glycosyltransferases GALNT3 and B3GNT3 in the self-renewal of pancreatic cancer stem cells. BMC Cancer, 2018, 18, 1157.	1.1	36
196	Alternate splicing at the 3?-end of the human pancreatic tumor-associated mucin MUC4 cDNA. Teratogenesis, Carcinogenesis, and Mutagenesis, 2001, 21, 83-96.	0.8	35
197	Comparative Study of Subcutaneous and Orthotopic Mouse Models of Prostate Cancer: Vascular Perfusion, Vasculature Density, Hypoxic Burden and BB2r-Targeting Efficacy. Scientific Reports, 2019, 9, 11117.	1.6	35
198	MiRâ€1253 exerts tumorâ€suppressive effects in medulloblastoma via inhibition of CDK6 and CD276 (B7â€H3). Brain Pathology, 2020, 30, 732-745.	2.1	35

#	Article	IF	CITATIONS
199	Recent advances in organoid development and applications in disease modeling. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188527.	3.3	35
200	Novel biomarkers and therapeutic targets for optimizing the therapeutic management of melanomas. World Journal of Clinical Oncology, 2012, 3, 32.	0.9	35
201	Inhibition of RAC1 GTPase sensitizes pancreatic cancer cells to Î ³ -irradiation. Oncotarget, 2014, 5, 10251-10270.	0.8	34
202	Binding characteristics and tumor targeting of a covalently linked divalent CC49 single-chain antibody. , 1999, 81, 911-917.		33
203	Recent advances on skinâ€resident stem/progenitor cell functions in skin regeneration, aging and cancers and novel antiâ€aging and cancer therapies. Journal of Cellular and Molecular Medicine, 2010, 14, 116-134.	1.6	33
204	Emerging therapeutic potential of graviola and its constituents in cancers. Carcinogenesis, 2018, 39, 522-533.	1.3	33
205	Epigenetic landscape of small cell lung cancer: small image of a giant recalcitrant disease. Seminars in Cancer Biology, 2022, 83, 57-76.	4.3	33
206	RNA Polymerase II-Associated Factor 1 Regulates Stem Cell Features of Pancreatic Cancer Cells, Independently of the PAF1 Complex, via Interactions With PHF5A and DDX3. Gastroenterology, 2020, 159, 1898-1915.e6.	0.6	33
207	Modeling pancreatic cancer in mice for experimental therapeutics. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188554.	3.3	33
208	Altered Mucins (MUC) Trafficking in Benign and Malignant Conditions. Oncotarget, 2014, 5, 7272-7284.	0.8	33
209	Genomic organization of MUC4 mucin gene. FEBS Journal, 2002, 269, 3637-3644.	0.2	32
210	Pharmacokinetics and biodistribution of 177Lu-labeled multivalent single-chain Fv construct of the pancarcinoma monoclonal antibody CC49. European Journal of Nuclear Medicine and Molecular Imaging, 2005, 32, 264-273.	3.3	32
211	Muc17 protects intestinal epithelial cells from enteroinvasive E. coli infection by promoting epithelial barrier integrity. American Journal of Physiology - Renal Physiology, 2011, 300, G1144-G1155.	1.6	32
212	Overexpression of Ecdysoneless in Pancreatic Cancer and Its Role in Oncogenesis by Regulating Glycolysis. Clinical Cancer Research, 2012, 18, 6188-6198.	3.2	32
213	GDF15 promotes prostate cancer bone metastasis and colonization through osteoblastic CCL2 and RANKL activation. Bone Research, 2022, 10, 6.	5.4	32
214	DNA methylation and histone H3-K9 modifications contribute to MUC17 expression. Glycobiology, 2011, 21, 247-256.	1.3	31
215	Upregulation of mucin4 in ER-positive/HER2-overexpressing breast cancer xenografts with acquired resistance to endocrine and HER2-targeted therapies. Breast Cancer Research and Treatment, 2012, 134, 583-593.	1.1	31
216	Novel HER3/MUC4 oncogenic signaling aggravates the tumorigenic phenotypes of pancreatic cancer cells. Oncotarget, 2015, 6, 21085-21099.	0.8	31

#	Article	IF	CITATIONS
217	Diagnosis of Pancreatic Neoplasms Using a Novel Method of DNA Methylation Analysis of Mucin Expression in Pancreatic Juice. PLoS ONE, 2014, 9, e93760.	1.1	30
218	Mucin 5AC Serves as the Nexus for β-Catenin/c-Myc Interplay to Promote Glutamine Dependency During Pancreatic Cancer Chemoresistance. Gastroenterology, 2022, 162, 253-268.e13.	0.6	30
219	Novel combination therapy against metastatic and androgen-independent prostate cancer by using gefitinib, tamoxifen and etoposide. International Journal of Cancer, 2007, 120, 160-169.	2.3	29
220	ErbB-2 signaling plays a critical role in regulating androgen-sensitive and castration-resistant androgen receptor-positive prostate cancer cells. Cellular Signalling, 2015, 27, 2261-2271.	1.7	29
221	PD2/PAF1 at the Crossroads of the Cancer Network. Cancer Research, 2018, 78, 313-319.	0.4	29
222	Polyanhydride nanoparticles stabilize pancreatic cancer antigen <scp>MUC4β</scp> . Journal of Biomedical Materials Research - Part A, 2021, 109, 893-902.	2.1	29
223	Single-Chain Antibodies in Pancreatic Cancer. Annals of the New York Academy of Sciences, 1999, 880, 263-280.	1.8	28
224	Charge-modified single chain antibody constructs of monoclonal antibody CC49: generation, characterization, pharmacokinetics, and biodistribution analysis. Nuclear Medicine and Biology, 1999, 26, 27-34.	0.3	28
225	PD2/Paf1 depletion in pancreatic acinar cells promotes acinar-to-ductal metaplasia. Oncotarget, 2014, 5, 4480-4491.	0.8	28
226	The canonical Wnt pathway regulates the metastasisâ€promoting mucin MUC4 in pancreatic ductal adenocarcinoma. Molecular Oncology, 2016, 10, 224-239.	2.1	28
227	Axed MUC4 (MUC4/X) aggravates pancreatic malignant phenotype by activating integrin-β1/FAK/ERK pathway. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2538-2549.	1.8	28
228	Elevating pancreatic cystic lesion stratification: Current and future pancreatic cancer biomarker(s). Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188318.	3.3	28
229	Sildenafil Potentiates the Therapeutic Efficacy of Docetaxel in Advanced Prostate Cancer by Stimulating NO-cGMP Signaling. Clinical Cancer Research, 2020, 26, 5720-5734.	3.2	28
230	hPaf1/PD2 interacts with OCT3/4 to promote self-renewal of ovarian cancer stem cells. Oncotarget, 2017, 8, 14806-14820.	0.8	28
231	Nicotine, IFN-Î ³ and retinoic acid mediated induction of MUC4 in pancreatic cancer requires E2F1 and STAT-1 transcription factors and utilize different signaling cascades. Molecular Cancer, 2012, 11, 24.	7.9	27
232	Immunocytochemistry for MUC4 and MUC16 Is a Useful Adjunct in the Diagnosis of Pancreatic Adenocarcinoma on Fine-Needle Aspiration Cytology. Archives of Pathology and Laboratory Medicine, 2013, 137, 546-551.	1.2	27
233	Combination Therapies and Drug Delivery Platforms in Combating Pancreatic Cancer. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 682-694.	1.3	27
234	A Non-genetic Mechanism Involving the Integrin β4/Paxillin Axis Contributes to Chemoresistance in Lung Cancer. IScience, 2020, 23, 101496.	1.9	27

#	Article	IF	CITATIONS
235	Characterization and use of HapT1-derived homologous tumors as a preclinical model to evaluate therapeutic efficacy of drugs against pancreatic tumor desmoplasia. Oncotarget, 0, 7, 41825-41842.	0.8	27
236	CD44 in normal human pancreas and pancreatic carcinoma cell lines. Teratogenesis, Carcinogenesis, and Mutagenesis, 2001, 21, 97-106.	0.8	26
237	Emergence of zebrafish models in oncology for validating novel anticancer drug targets and nanomaterials. Drug Discovery Today, 2013, 18, 128-140.	3.2	26
238	Mucin Expression in Endoscopic Ultrasound-Guided Fine-Needle Aspiration Specimens Is a Useful Prognostic Factor in Pancreatic Ductal Adenocarcinoma. Pancreas, 2015, 44, 728-734.	0.5	26
239	Polyplex-mediated inhibition of chemokine receptor CXCR4 and chromatin-remodeling enzyme NCOA3 impedes pancreatic cancer progression and metastasis. Biomaterials, 2016, 101, 108-120.	5.7	26
240	The Human RNA Polymerase II-Associated Factor 1 (hPaf1): A New Regulator of Cell-Cycle Progression. PLoS ONE, 2009, 4, e7077.	1.1	26
241	Amyloid precursor-like protein 2 (APLP2) affects the actin cytoskeleton and increases pancreatic cancer growth and metastasis. Oncotarget, 2015, 6, 2064-2075.	0.8	26
242	Expression of mucin antigens (MUC1 and MUC16) as a prognostic factor for mucinous adenocarcinoma of the uterine cervix. Journal of Obstetrics and Gynaecology Research, 2010, 36, 588-597.	0.6	25
243	Human RNA Polymerase II-Association Factor 1 (hPaf1/PD2) Regulates Histone Methylation and Chromatin Remodeling in Pancreatic Cancer. PLoS ONE, 2011, 6, e26926.	1.1	25
244	Epidermal growth factor downâ€regulates the expression of neutrophil gelatinaseâ€associated lipocalin (NGAL) through Eâ€cadherin in pancreatic cancer cells. Cancer, 2011, 117, 2408-2418.	2.0	25
245	Differentiating Peripherally-Located Small Cell Lung Cancer From Non-small Cell Lung Cancer Using a CT Radiomic Approach. Frontiers in Oncology, 2020, 10, 593.	1.3	25
246	Mucins, gut microbiota, and postbiotics role in colorectal cancer. Gut Microbes, 2021, 13, 1974795.	4.3	25
247	Great Promise of Tissue-Resident Adult Stem/Progenitor Cells in Transplantation and Cancer Therapies. Advances in Experimental Medicine and Biology, 2012, 741, 171-186.	0.8	24
248	Emerging potential of natural products for targeting mucins for therapy against inflammation and cancer. Cancer Treatment Reviews, 2015, 41, 277-288.	3.4	24
249	Statin derivatives as therapeutic agents for castration-resistant prostate cancer. Cancer Letters, 2016, 383, 94-105.	3.2	24
250	Trefoil factor(s) and CA19.9: A promising panel for early detection of pancreatic cancer. EBioMedicine, 2019, 42, 375-385.	2.7	24
251	Unraveling mucin domains in cancer and metastasis: when protectors become predators. Cancer and Metastasis Reviews, 2020, 39, 647-659.	2.7	24
252	Improvement of cytotoxic effects induced by mitoxantrone on hormone-refractory metastatic prostate cancer cells by co-targeting epidermal growth factor receptor and hedgehog signaling cascades. Growth Factors, 2007, 25, 400-416.	0.5	23

#	Article	IF	CITATIONS
253	Novel Imidazopyridine Derivatives Possess Anti-Tumor Effect on Human Castration-Resistant Prostate Cancer Cells. PLoS ONE, 2015, 10, e0131811.	1.1	23
254	Genetically engineered mucin mouse models for inflammation and cancer. Cancer and Metastasis Reviews, 2015, 34, 593-609.	2.7	23
255	Bile acidsâ€mediated overexpression of MUC4 via FAKâ€dependent câ€Jun activation in pancreatic cancer. Molecular Oncology, 2016, 10, 1063-1077.	2.1	23
256	PR55 \hat{i}_{\pm} regulatory subunit of PP2A inhibits the MOB1/LATS cascade and activates YAP in pancreatic cancer cells. Oncogenesis, 2019, 8, 63.	2.1	23
257	Cardiovascular risks and toxicity - The Achilles heel of androgen deprivation therapy in prostate cancer patients. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188383.	3.3	23
258	Biomarkers for Early Detection of Colorectal Cancer: The Early Detection Research Network, a Framework for Clinical Translation. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 2431-2440.	1.1	23
259	Amphiphilic polyanhydride-based recombinant MUC4β-nanovaccine activates dendritic cells. Genes and Cancer, 2019, 10, 52-62.	0.6	23
260	Liquid biopsies to occult brain metastasis. Molecular Cancer, 2022, 21, 113.	7.9	23
261	Neutrophil Gelatinase-Associated Lipocalin, Macrophage Inhibitory Cytokine 1, and Carbohydrate Antigen 19-9 in Pancreatic Juice. Pancreas, 2013, 42, 494-501.	0.5	22
262	Pathological and functional significance of Semaphorin-5A in pancreatic cancer progression and metastasis. Oncotarget, 2018, 9, 5931-5943.	0.8	22
263	Repurposing Niclosamide for Targeting Pancreatic Cancer by Inhibiting Hh/Gli Non-Canonical Axis of Gsk3β. Cancers, 2021, 13, 3105.	1.7	22
264	MUC4 as a diagnostic marker in cancer. Expert Opinion on Medical Diagnostics, 2008, 2, 891-910.	1.6	21
265	Mucins and Toll-like receptors: Kith and kin in infection and cancer. Cancer Letters, 2012, 321, 110-119.	3.2	21
266	Cancer stem cells and therapeutic targets: an emerging field for cancer treatment. Drug Delivery and Translational Research, 2013, 3, 113-120.	3.0	21
267	Cellular prostatic acid phosphatase, a PTEN-functional homologue in prostate epithelia, functions as a prostate-specific tumor suppressor. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 88-98.	3.3	21
268	Development and characterization of carboxy-terminus specific monoclonal antibodies for understanding MUC16 cleavage in human ovarian cancer. PLoS ONE, 2018, 13, e0193907.	1.1	21
269	Immunometabolic Alterations by HPV Infection: New Dimensions to Head and Neck Cancer Disparity. Journal of the National Cancer Institute, 2019, 111, 233-244.	3.0	21
270	Alcohol and Smoking Mediated Modulations in Adaptive Immunity in Pancreatitis. Cells, 2020, 9, 1880.	1.8	21

#	Article	IF	CITATIONS
271	Chemokines and cytokines: Axis and allies in prostate cancer pathogenesis. Seminars in Cancer Biology, 2022, 86, 497-512.	4.3	21
272	Upregulation of MUC4 in Cervical Squamous Cell Carcinoma: Pathologic Significance. International Journal of Gynecological Pathology, 2009, 28, 127-133.	0.9	20
273	Aberrant upregulation of MUC4 mucin expression in cutaneous condyloma acuminatum and squamous cell carcinoma suggests a potential role in the diagnosis and therapy of skin diseases. Journal of Clinical Pathology, 2010, 63, 579-584.	1.0	20
274	Complex Oncogenic Signaling Networks Regulate Brain Tumorâ€Initiating Cells and Their Progenies: Pivotal Roles of Wildâ€Type EGFR, EGFRvIII Mutant and Hedgehog Cascades and Novel Multitargeted Therapies. Brain Pathology, 2011, 21, 479-500.	2.1	20
275	Expression of MUC4 Mucin Is Observed Mainly in the Intestinal Type of Intraductal Papillary Mucinous Neoplasm of the Pancreas. Pancreas, 2013, 42, 1120-1128.	0.5	20
276	Genetic Variants of Mucins: Unexplored Conundrum. Carcinogenesis, 2017, 38, bgw120.	1.3	20
277	PTTG1: a Unique Regulator of Stem/Cancer Stem Cells in the Ovary and Ovarian Cancer. Stem Cell Reviews and Reports, 2019, 15, 866-879.	1.7	20
278	The Current Landscape of Antibody-based Therapies in Solid Malignancies. Theranostics, 2021, 11, 1493-1512.	4.6	20
279	Development of animal models underlining mechanistic connections between prostate inflammation and cancer. World Journal of Clinical Oncology, 2013, 4, 4.	0.9	19
280	Mucins and associated O-glycans based immunoprofile for stratification of colorectal polyps: clinical implication for improved colon surveillance. Oncotarget, 2017, 8, 7025-7038.	0.8	19
281	p66Shc regulates migration of castration-resistant prostate cancer cells. Cellular Signalling, 2018, 46, 1-14.	1.7	19
282	Characterization of Nonmalignant and Malignant Prostatic Stem/Progenitor Cells by Hoechst Side Population Method. Methods in Molecular Biology, 2009, 568, 139-149.	0.4	19
283	Overexpression of PD2 leads to increased tumorigenicity and metastasis in pancreatic ductal adenocarcinoma. Oncotarget, 2016, 7, 3317-3331.	0.8	19
284	Purification and Characterization of a Human Pancreatic Adenocarcinoma Mucin. Journal of Biochemistry, 2002, 131, 21-29.	0.9	18
285	Ovarian Cancer Stem Cells: Unraveling a Germline Connection. Stem Cells and Development, 2017, 26, 1781-1803.	1.1	18
286	Role of phosphodiesterase 1 in the pathophysiology of diseases and potential therapeutic opportunities. , 2021, 226, 107858.		18
287	MUC4 is negatively regulated through the Wnt/ \hat{I}^2 -catenin pathway via the Notch effector Hath1 in colorectal cancer. Genes and Cancer, 2016, 7, 154-168.	0.6	18
288	Recent advances in the development of novel anti ancer drugs targeting cancer stem/progenitor cells. Drug Development Research, 2008, 69, 415-430.	1.4	17

#	Article	IF	CITATIONS
289	Utilizing cell line-derived organoids to evaluate the efficacy of a novel LIFR-inhibitor, EC359 in targeting pancreatic tumor stroma. Genes and Cancer, 2018, 10, 1-10.	0.6	17
290	Tumor- and osteoclast-derived NRP2 in prostate cancer bone metastases. Bone Research, 2021, 9, 24.	5.4	17
291	TET1-mediated DNA hypomethylation regulates the expression of MUC4 in lung cancer. Genes and Cancer, 2017, 8, 517-527.	0.6	17
292	Acinar to ductal cell trans-differentiation: A prelude to dysplasia and pancreatic ductal adenocarcinoma. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188669.	3.3	17
293	Role of Neuropilin-2-mediated signaling axis in cancer progression and therapy resistance. Cancer and Metastasis Reviews, 2022, 41, 771-787.	2.7	17
294	Dual blockade of EGFR and CDK4/6 delays head and neck squamous cell carcinoma progression by inducing metabolic rewiring. Cancer Letters, 2021, 510, 79-92.	3.2	16
295	Immunohistochemical study of mucin expression in periampullary adenomyoma. Journal of Hepato-Biliary-Pancreatic Sciences, 2010, 17, 275-283.	1.4	15
296	Combination of MUC1 and MUC4 expression predicts clinical outcome in patients with oral squamous cell carcinoma. International Journal of Clinical Oncology, 2015, 20, 298-307.	1.0	15
297	Intracellular amyloid beta expression leads to dysregulation of the mitogen-activated protein kinase and bone morphogenetic protein-2 signaling axis. PLoS ONE, 2018, 13, e0191696.	1.1	15
298	Anti-Claudin-1 Conjugated to a Near-Infrared Fluorophore Targets Colon Cancer in PDOX MouseÂModels. Journal of Surgical Research, 2019, 242, 145-150.	0.8	15
299	Monoclonal Antibodies Recognizing the Non-Tandem Repeat Regions of the Human Mucin MUC4 in Pancreatic Cancer. PLoS ONE, 2011, 6, e23344.	1.1	15
300	Reduction in O-glycome induces differentially glycosylated CD44 to promote stemness and metastasis in pancreatic cancer. Oncogene, 2022, 41, 57-71.	2.6	15
301	Animal models relevant to human prostate carcinogenesis underlining the critical implication of prostatic stem/progenitor cells. Biochimica Et Biophysica Acta: Reviews on Cancer, 2011, 1816, 25-37.	3.3	14
302	Emerging Trends for Radioimmunotherapy in Solid Tumors. Cancer Biotherapy and Radiopharmaceuticals, 2013, 28, 639-650.	0.7	14
303	A Comprehensive Expression Analysis of Mucins in Appendiceal Carcinoma in a Multicenter Study: MUC3 Is a Novel Prognostic Factor. PLoS ONE, 2014, 9, e115613.	1.1	14
304	CXCR3 and Cognate Ligands are Associated with Immune Cell Alteration and Aggressiveness of Pancreatic Ductal Adenocarcinoma. Clinical Cancer Research, 2020, 26, 6051-6063.	3.2	14
305	Mucins reprogram stemness, metabolism and promote chemoresistance during cancer progression. Cancer and Metastasis Reviews, 2021, 40, 575-588.	2.7	14
306	MicroRNA-1: Diverse role of a small player in multiple cancers. Seminars in Cell and Developmental Biology, 2022, 124, 114-126.	2.3	14

#	Article	IF	CITATIONS
307	ST6CalNAcâ€I promotes lung cancer metastasis by altering MUC5AC sialylation. Molecular Oncology, 2021, 15, 1866-1881.	2.1	14
308	Differential responsiveness of MET inhibition in non-small-cell lung cancer with altered CBL. Scientific Reports, 2017, 7, 9192.	1.6	13
309	Odyssey of trefoil factors in cancer: Diagnostic and therapeutic implications. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188362.	3.3	13
310	Inhibitors of telomerase and poly(ADP-ribose) polymerases synergize to limit the lifespan of pancreatic cancer cells. Oncotarget, 2017, 8, 83754-83767.	0.8	13
311	Cytokines chattering in pancreatic ductal adenocarcinoma tumor microenvironment. Seminars in Cancer Biology, 2022, 86, 499-510.	4.3	13
312	Dynamic Phenotypic Switching and Group Behavior Help Non-Small Cell Lung Cancer Cells Evade Chemotherapy. Biomolecules, 2022, 12, 8.	1.8	13
313	Hedgehog signaling and its molecular perspective with cholesterol: a comprehensive review. Cellular and Molecular Life Sciences, 2022, 79, 266.	2.4	13
314	In Vivo Effect of Wood Smoke on the Expression of Two Mucin Genes in Rat Airways. Inflammation, 2004, 28, 67-76.	1.7	12
315	Cell-penetrating peptides and antibodies: a new direction for optimizing radioimmunotherapy. European Journal of Nuclear Medicine and Molecular Imaging, 2007, 34, 973-977.	3.3	12
316	Inhibiting crosstalk between MET signaling and mitochondrial dynamics and morphology: a novel therapeutic approach for lung cancer and mesothelioma. Cancer Biology and Therapy, 2018, 19, 1023-1032.	1.5	12
317	Novel therapies hijack the blood–brain barrier to eradicate glioblastoma cancer stem cells. Carcinogenesis, 2019, 40, 2-14.	1.3	12
318	Pathobiological Implications of Mucin (MUC) Expression in the Outcome of Small Bowel Cancer. PLoS ONE, 2014, 9, e86111.	1.1	12
319	MUC16 Promotes Liver Metastasis of Pancreatic Ductal Adenocarcinoma by Upregulating NRP2-Associated Cell Adhesion. Molecular Cancer Research, 2022, 20, 1208-1221.	1.5	12
320	Pharmacokinetics and biodistribution of a light-chain-shuffled CC49 single-chain Fv antibody construct. Cancer Immunology, Immunotherapy, 2000, 49, 267-275.	2.0	11
321	Engineering and characterization of a divalent single-chain Fv angiotensin II fusion construct of the monoclonal antibody CC49. Biochemical and Biophysical Research Communications, 2005, 329, 168-176.	1.0	11
322	Novel Therapies Against Aggressive and Recurrent Epithelial Cancers by Molecular Targeting Tumor- and Metastasis-Initiating Cells and Their Progenies. Anti-Cancer Agents in Medicinal Chemistry, 2010, 10, 137-151.	0.9	11
323	Quantitative Real-Time PCR Expression Analysis of Peripheral Blood Mononuclear Cells in Pancreatic Cancer Patients. Methods in Molecular Biology, 2013, 980, 157-173.	0.4	11
324	PGC1α-Mediated Metabolic Reprogramming Drives the Stemness of Pancreatic Precursor Lesions. Clinical Cancer Research, 2021, 27, 5415-5429.	3.2	11

#	Article	IF	CITATIONS
325	MASTL regulates EGFR signaling to impact pancreatic cancer progression. Oncogene, 2021, 40, 5691-5704.	2.6	11
326	Implications of prognosis-associated genes in pancreatic tumor metastasis: lessons from global studies in bioinformatics. Cancer and Metastasis Reviews, 2021, 40, 721-738.	2.7	11
327	Immunohistochemical expression of mucin antigens in gallbladder adenocarcinoma: MUC1-positive and MUC2-negative expression Is associated with vessel invasion and shortened survival. Histology and Histopathology, 2017, 32, 585-596.	0.5	11
328	Mouse Model of Dextran Sodium Sulfate (DSS)-induced Colitis. Bio-protocol, 2017, 7, e2515.	0.2	11
329	Disruption of FDPS/Rac1 axis radiosensitizes pancreatic ductal adenocarcinoma by attenuating DNA damage response and immunosuppressive signalling. EBioMedicine, 2022, 75, 103772.	2.7	11
330	Mucin 5AC–Mediated CD44/ITGB1 Clustering Mobilizes Adipose-Derived Mesenchymal Stem Cells to Modulate Pancreatic Cancer Stromal Heterogeneity. Gastroenterology, 2022, 162, 2032-2046.e12.	0.6	11
331	Depletion of transmembrane mucin 4 (Muc4) alters intestinal homeostasis in a genetically engineered mouse model of colorectal cancer. Aging, 2022, 14, 2025-2046.	1.4	11
332	Immunohistochemistry of Pancreatic Neoplasia. Methods in Molecular Biology, 2013, 980, 29-42.	0.4	10
333	Differential mutation spectrum and immune landscape in African Americans versus Whites: A possible determinant to health disparity in head and neck cancer. Cancer Letters, 2020, 492, 44-53.	3.2	10
334	Chemokines network in bone metastasis: Vital regulators of seeding and soiling. Seminars in Cancer Biology, 2022, 86, 457-472.	4.3	10
335	Advances in miRNA-Mediated Mucin Regulation. Current Pharmacology Reports, 2015, 1, 355-364.	1.5	9
336	Precision Medicine for CRC Patients in the Veteran Population: State-of-the-Art, Challenges and Research Directions. Digestive Diseases and Sciences, 2018, 63, 1123-1138.	1.1	9
337	Vitamin E Î ⁻ tocotrienol sensitizes human pancreatic cancer cells to TRAIL-induced apoptosis through proteasome-mediated down-regulation of c-FLIPs. Cancer Cell International, 2019, 19, 189.	1.8	9
338	Uncovering and characterizing splice variants associated with survival in lung cancer patients. PLoS Computational Biology, 2019, 15, e1007469.	1.5	9
339	Biomarkers and Strategy to Detect Preinvasive and Early Pancreatic Cancer: State of the Field and the Impact of the EDRN. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 2513-2523.	1.1	9
340	Evaluation of Somatic Mutations in Solid Metastatic Pan-Cancer Patients. Cancers, 2021, 13, 2776.	1.7	9
341	Protein Phosphatase 2A as a Therapeutic Target in Small Cell Lung Cancer. Molecular Cancer Therapeutics, 2021, 20, 1820-1835.	1.9	9
342	Mucin Expression and Splicing Determine Novel Subtypes and Patient Mortality in Pancreatic Ductal Adenocarcinoma. Clinical Cancer Research, 2021, 27, 6787-6799.	3.2	9

#	Article	IF	CITATIONS
343	MiR-212-3p functions as a tumor suppressor gene in group 3 medulloblastoma via targeting nuclear factor I/B (NFIB). Acta Neuropathologica Communications, 2021, 9, 195.	2.4	9
344	Genetically engineered antibody fragments and PET imaging: a new era of radioimmunodiagnosis. Journal of Nuclear Medicine, 2003, 44, 1970-2.	2.8	9
345	Chemokine-mucinome interplay in shaping the heterogeneous tumor microenvironment of pancreatic cancer. Seminars in Cancer Biology, 2022, 86, 511-520.	4.3	9
346	Small Cell Lung Cancer Therapeutic Responses Through Fractal Measurements: From Radiology to Mitochondrial Biology. Journal of Clinical Medicine, 2019, 8, 1038.	1.0	8
347	Nanoscale platform for delivery of active IRINOX to combat pancreatic cancer. Journal of Controlled Release, 2021, 330, 1229-1243.	4.8	8
348	Molecular mechanisms of pancreatic myofibroblast activation in chronic pancreatitis and pancreatic ductal adenocarcinoma. Journal of Gastroenterology, 2021, 56, 689-703.	2.3	8
349	Differential gene expression-based connectivity mapping identified novel drug candidate and improved Temozolomide efficacy for Glioblastoma. Journal of Experimental and Clinical Cancer Research, 2021, 40, 335.	3.5	8
350	Systems Biology Approach to Identify Novel Genomic Determinants for Pancreatic Cancer Pathogenesis. Scientific Reports, 2019, 9, 123.	1.6	7
351	Presence and structureâ€activity relationship of intrinsically disordered regions across mucins. FASEB Journal, 2020, 34, 1939-1957.	0.2	7
352	Precision medicine and actionable alterations in lung cancer: A single institution experience. PLoS ONE, 2020, 15, e0228188.	1.1	7
353	Plexin-B3 Regulates Cellular Motility, Invasiveness, and Metastasis in Pancreatic Cancer. Cancers, 2021, 13, 818.	1.7	7
354	SUMO Modification of PAF1/PD2 Enables PML Interaction and Promotes Radiation Resistance in Pancreatic Ductal Adenocarcinoma. Molecular and Cellular Biology, 2021, 41, e0013521.	1.1	7
355	Significance of microRNA-based biomarkers for pancreatic cancer. Annals of Translational Medicine, 2015, 3, 277.	0.7	7
356	Ubiquitous Aberration in Cholesterol Metabolism across Pancreatic Ductal Adenocarcinoma. Metabolites, 2022, 12, 47.	1.3	7
357	Rethinking the chemokine cascade in brain metastasis: Preventive and therapeutic implications. Seminars in Cancer Biology, 2022, 86, 914-930.	4.3	7
358	DNA-gold nanoprobe-based integrated biosensing technology for non-invasive liquid biopsy of serum miRNA: A new frontier in prostate cancer diagnosis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 43, 102566.	1.7	7
359	Antibody constructs for radioimmunodiagnosis and treatment of human pancreatic cancer. Teratogenesis, Carcinogenesis, and Mutagenesis, 2001, 21, 45-57.	0.8	6
360	A Comparative Analysis of Survival and Funding Discrepancies in Cancers With High Mortality. Annals of Surgery, 2020, 271, 296-302.	2.1	6

#	Article	IF	CITATIONS
361	Proteasomal Regulation of Mammalian SPT16 in Controlling Transcription. Molecular and Cellular Biology, 2021, 41, .	1.1	6
362	The GSK3 kinase and LZTR1 protein regulate the stability of Ras family proteins and the proliferation of pancreatic cancer cells. Neoplasia, 2022, 25, 28-40.	2.3	6
363	Neuropilin-2 regulates androgen-receptor transcriptional activity in advanced prostate cancer. Oncogene, 2022, 41, 3747-3760.	2.6	6
364	MARK2 regulates chemotherapeutic responses through class IIa HDAC-YAP axis in pancreatic cancer. Oncogene, 2022, 41, 3859-3875.	2.6	6
365	Interleukin-22 Connects Smoking and Pancreatic Fibrosis During Chronic Pancreatitis. Gastroenterology, 2016, 151, 1067-1070.	0.6	5
366	Ubiquitin–Proteasome System Regulation of an Evolutionarily Conserved RNA Polymerase II-Associated Factor 1 Involved in Pancreatic Oncogenesis. Biochemistry, 2017, 56, 6083-6086.	1.2	5
367	Monitoring and Determining Mitochondrial Network Parameters in Live Lung Cancer Cells. Journal of Clinical Medicine, 2019, 8, 1723.	1.0	5
368	Blocking c-MET/ERBB1 Axis Prevents Brain Metastasis in ERBB2+ Breast Cancer. Cancers, 2020, 12, 2838.	1.7	5
369	Acinar transformed ductal cells exhibit differential mucin expression in a tamoxifen-induced pancreatic ductal adenocarcinoma mouse model. Biology Open, 2020, 9, .	0.6	5
370	Contribution of CXCR3-mediated signaling in the metastatic cascade of solid malignancies. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188628.	3.3	5
371	Binding characteristics and tumor targeting of a covalently linked divalent CC49 single hain antibody. International Journal of Cancer, 1999, 81, 911-917.	2.3	5
372	Nuclear factor kappa-B contributes to cigarette smoke tolerance in pancreatic ductal adenocarcinoma through cysteine metabolism. Biomedicine and Pharmacotherapy, 2021, 144, 112312.	2.5	5
373	Macrophage inhibitory cytokine-1 in cancer: Beyond the cellular phenotype. Cancer Letters, 2022, 536, 215664.	3.2	5
374	Fluorescent Anti-MUC5AC Brightly Targets Pancreatic Cancer in a Patient-derived Orthotopic Xenograft. In Vivo, 2022, 36, 57-62.	0.6	5
375	Anti-mucin 4 fluorescent antibody brightly targets colon cancer in patient-derived orthotopic xenograft mouse models: A proof-of-concept study for future clinical applications. American Journal of Surgery, 2022, 224, 1081-1085.	0.9	5
376	Human PAF complexes in endocrine tumors and pancreatic cancer. Expert Review of Endocrinology and Metabolism, 2008, 3, 557-565.	1.2	4
377	Analysis of Tumor-Associated Mucin Glycotopes by Western Transfer Methods. Methods in Molecular Biology, 2013, 980, 331-340.	0.4	4
378	Neutrophil Gelatinase–Associated Lipocalin Protects Acinar Cells From Cerulein-Induced Damage During Acute Pancreatitis. Pancreas, 2020, 49, 1297-1306.	0.5	4

#	Article	IF	CITATIONS
379	Response to correspondence on "Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation― Genome Biology, 2021, 22, 99.	3.8	4
380	Characterization of recombinant β subunit of human MUC4 mucin (rMUC4β). Scientific Reports, 2021, 11, 23730.	1.6	4
381	Immunohistochemical expression profiles of mucin antigens in salivary gland mucoepidermoid carcinoma: MUC4- and MUC6-negative expression predicts a shortened survival in the early postoperative phase. Histology and Histopathology, 2018, 33, 201-213.	0.5	4
382	Editorial: Metastatic Castration Resistant Prostate Cancer: Prognosis and Treatment. Frontiers in Oncology, 2022, 12, .	1.3	4
383	Liquid Biopsy for Identification of High-Risk Cystic Lesions of Pancreas. Gastroenterology, 2021, 160, 1016-1018.	0.6	3
384	Amyloid Precursor-like Protein 2 Expression Increases during Pancreatic Cancer Development and Shortens the Survival of a Spontaneous Mouse Model of Pancreatic Cancer. Cancers, 2021, 13, 1535.	1.7	3
385	Recent Advances in Head and Neck Tumor Microenvironment–Based Therapy. Advances in Experimental Medicine and Biology, 2020, 1296, 11-31.	0.8	3
386	Emerging Role of miR-345 and Its Effective Delivery as a Potential Therapeutic Candidate in Pancreatic Cancer and Other Cancers. Pharmaceutics, 2021, 13, 1987.	2.0	3
387	Endothelin-axis antagonism enhances tumor perfusion in pancreatic cancer. Cancer Letters, 2022, 544, 215801.	3.2	3
388	Insights Into the Role of Nicotine in Pancreatic Stem Cell Activation and Acinar Dedifferentiation. Gastroenterology, 2014, 147, 962-965.	0.6	2
389	Hunting for transcription factors: STAT3 decoy in non-small cell lung cancer. Translational Lung Cancer Research, 2018, 7, S254-S257.	1.3	2
390	A phase I study of weekly doxorubicin and oral topotecan for patients with relapsed or refractory small cell lung cancer (SCLC): A Fred and Pamela Buffet Cancer Center Clinical Trials Network study. Cancer Treatment and Research Communications, 2020, 22, 100162.	0.7	2
391	Targeting the lκB Kinase Enhancer and Its Feedback Circuit in Pancreatic Cancer. Translational Oncology, 2020, 13, 481-489.	1.7	2
392	Role of non-Genetic Risk Factors in Exacerbating Alcohol-related organ damage. Alcohol, 2020, 87, 63-72.	0.8	1
393	Receptor Tyrosine Kinase Signaling Pathways as a Goldmine for Targeted Therapy in Head and Neck Cancers. , 2021, , 163-184.		1
394	Effects of selected deubiquitinating enzyme inhibitors on the proliferation and motility of lung cancer and mesothelioma cell lines. International Journal of Oncology, 2020, 57, 80-86.	1.4	1
395	Substituent Effects Impact Surface Charge and Aggregation of Thiophenol-Labeled Gold Nanoparticles for SERS Biosensors. Biosensors, 2022, 12, 25.	2.3	1
396	Potential Molecular Therapeutic Targets in Cancer Stem/Progenitor Cells: Are ATP-Binding Cassette Membrane Transporters Appropriate Targets to Eliminate Cancer-Initiating Cells?. , 2009, , 385-421.		0

#	Article	IF	CITATIONS
397	New Concepts on the Critical Functions of Cancer- and Metastasis-Initiating Cells in Treatment Resistance and Disease Relapse: Molecular Mechanisms, Signaling Transduction Elements and Novel Targeting Therapies. Cancer Metastasis - Biology and Treatment, 2010, , 175-207.	0.1	0
398	Introduction at the special issue on implications of cancer stem/progenitor cell concepts in molecular oncology and novel targeted therapies. Molecular Aspects of Medicine, 2014, 39, 1-2.	2.7	0
399	MEDU-08. MiR-1253 POSSESSES NOVEL TUMOR SUPPRESSOR PROPERTIES IN PEDIATRIC MEDULLOBLASTOMA. Neuro-Oncology, 2019, 21, ii104-ii105.	0.6	0
400	Mouse models of pancreatic cancer: An ever-emerging arm of cancer drug discovery. , 2019, , 249-266.		0
401	Reply. Gastroenterology, 2021, 160, 2225-2226.	0.6	0
402	Delivery of radioimmunotherapy for solid tumors. , 2022, , 437-461.		0
403	Critical Roles of Tumorigenic and Migrating Cancer Stem/Progenitor Cells in Cancer Progression and their Therapeutic Implications. , 2009, , 287-308.		0
404	Implications of Mutant Epidermal Growth Factor Variant III in Brain Tumor Development and Novel Targeted Therapies. , 2011, , 251-259.		0
405	Mucins (MUCs). , 2016, , 1-14.		0
406	Mucins (MUCs). , 2018, , 3256-3269.		0
407	Regulation of an Evolutionarily Conserved RNA Polymerase IIâ€Associated Factor 1 (Paf1) Involved in Pancreatic Oncogenesis. FASEB Journal, 2018, 32, 648.8.	0.2	0
408	MBRS-13. MiR-1253 POTENTIATES CISPLATIN RESPONSE IN PEDIATRIC MEDULLOBLASTOMA BY REGULATING FERROPTOSIS. Neuro-Oncology, 2020, 22, iii400-iii400.	0.6	0
409	Reply. Cancer Letters, 2022, 527, 193-194.	3.2	0
410	A p130Cas-Mediated Mechanism Governs Acinar to Ductal Metaplasia and the Initiation of Pancreatic Ductal Adenocarcinoma. Gastroenterology, 2022, , .	0.6	0
411	Precision medicine and actionable alterations in lung cancer: A single institution experience. , 2020, 15, e0228188.		0
412	Precision medicine and actionable alterations in lung cancer: A single institution experience. , 2020, 15, e0228188.		0
413	Precision medicine and actionable alterations in lung cancer: A single institution experience. , 2020, 15, e0228188.		0
414	Precision medicine and actionable alterations in lung cancer: A single institution experience. , 2020, 15,		0

⁴¹⁴ e0228188.

Surinder K Batra

#	Article	IF	CITATIONS
415	Panâ€eancer analysis of altered glycosyltransferases confers poor clinical outcomes. Clinical and Translational Discovery, 2022, 2, .	0.2	0