Shobha Ghosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2141168/publications.pdf Version: 2024-02-01

SHORHA CHOSH

#	Article	IF	CITATIONS
1	Measurement of In Vivo VLDL and Chylomicron Secretion. Methods in Molecular Biology, 2022, 2455, 63-71.	0.9	0
2	Over-Expression of Intestinal Alkaline Phosphatase Attenuates Atherosclerosis. Circulation Research, 2021, 128, 1646-1659.	4.5	19
3	Dietary Supplementation with Galactooligosaccharides Attenuates High-Fat, High-Cholesterol Diet-Induced Glucose Intolerance and Disruption of Colonic Mucin Layer in C57BL/6 Mice and Reduces Atherosclerosis in Ldlr–/– Mice. Journal of Nutrition, 2020, 150, 285-293.	2.9	22
4	Nanoparticle-based "Two-pronged―approach to regress atherosclerosis by simultaneous modulation of cholesterol influx and efflux. Biomaterials, 2020, 260, 120333.	11.4	27
5	HMGB1 (High-Mobility Group Box-1). Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2561-2563.	2.4	3
6	Intestinal Barrier Dysfunction, LPS Translocation, and Disease Development. Journal of the Endocrine Society, 2020, 4, bvz039.	0.2	291
7	Intestinal barrier function and metabolic/liver diseases. Liver Research, 2020, 4, 81-87.	1.4	22
8	Identifying important parameters in the inflammatory process with a mathematical model of immune cell influx and macrophage polarization. PLoS Computational Biology, 2019, 15, e1007172.	3.2	26
9	Regulation of interleukinâ€1 beta secretion from macrophages via modulation of potassium ion (K ⁺) channel activity. FEBS Letters, 2019, 593, 1166-1178.	2.8	1
10	Curcumin as a potential therapeutic option for NAFLD and other metabolic diseases: need for establishing the underlying mechanism(s) of action. Hepatology International, 2019, 13, 245-247.	4.2	2
11	Sodium butyrate ameliorates insulin resistance and renal failure in CKD rats by modulating intestinal permeability and mucin expression. Nephrology Dialysis Transplantation, 2019, 34, 783-794.	0.7	110
12	Curcumin-mediated regulation of intestinal barrier function: The mechanism underlying its beneficial effects. Tissue Barriers, 2018, 6, e1425085.	3.2	59
13	Sterol carrier protein-2 deficiency attenuates diet-induced dyslipidemia and atherosclerosis in mice. Journal of Biological Chemistry, 2018, 293, 9223-9231.	3.4	14
14	Development of mannose functionalized dendrimeric nanoparticles for targeted delivery to macrophages: use of this platform to modulate atherosclerosis. Translational Research, 2018, 193, 13-30.	5.0	63
15	Leutusome: A Biomimetic Nanoplatform Integrating Plasma Membrane Components of Leukocytes and Tumor Cells for Remarkably Enhanced Solid Tumor Homing. Nano Letters, 2018, 18, 6164-6174.	9.1	111
16	Astrocyte Elevated Gene-1 Regulates Macrophage Activation in Hepatocellular Carcinogenesis. Cancer Research, 2018, 78, 6436-6446.	0.9	22
17	Intestine-specific expression of human chimeric intestinal alkaline phosphatase attenuates Western diet-induced barrier dysfunction and glucose intolerance. Physiological Reports, 2018, 6, e13790.	1.7	24
18	A novel role of astrocyte elevated geneâ€1 (AEGâ€1) in regulating nonalcoholic steatohepatitis (NASH). Hepatology, 2017, 66, 466-480.	7.3	35

Shobha Ghosh

#	Article	IF	CITATIONS
19	Bolstering cholesteryl ester hydrolysis in liver: A hepatocyte-targeting gene delivery strategy for potential alleviation of atherosclerosis. Biomaterials, 2017, 130, 1-13.	11.4	25
20	Curcumin improves intestinal barrier function: modulation of intracellular signaling, and organization of tight junctions. American Journal of Physiology - Cell Physiology, 2017, 312, C438-C445.	4.6	153
21	Nanomedicines for dysfunctional macrophage-associated diseases. Journal of Controlled Release, 2017, 247, 106-126.	9.9	43
22	Intracellular cholesterol transport proteins enhance hydrolysis of HDL-CEs and facilitate elimination of cholesterol into bile. Journal of Lipid Research, 2016, 57, 1712-1719.	4.2	13
23	High Fat High Cholesterol Diet (Western Diet) Aggravates Atherosclerosis, Hyperglycemia and Renal Failure in Nephrectomized LDL Receptor Knockout Mice: Role of Intestine Derived Lipopolysaccharide. PLoS ONE, 2015, 10, e0141109.	2.5	18
24	Astrocyte Elevated Gene-1 (AEG-1) Regulates Lipid Homeostasis. Journal of Biological Chemistry, 2015, 290, 18227-18236.	3.4	18
25	Role of Cholesteryl Ester (CE) Hydrolase Mediated Mobilization of Intracellular CE in Regulating Inflammasome Activation. FASEB Journal, 2015, 29, 715.2.	0.5	1
26	Oral Supplementation with Non-Absorbable Antibiotics or Curcumin Attenuates Western Diet-Induced Atherosclerosis and Glucose Intolerance in LDLRâ^'/âr' Mice – Role of Intestinal Permeability and Macrophage Activation. PLoS ONE, 2014, 9, e108577.	2.5	125
27	Curcumin and Chronic Kidney Disease (CKD): Major Mode of Action through Stimulating Endogenous Intestinal Alkaline Phosphatase. Molecules, 2014, 19, 20139-20156.	3.8	73
28	AEG-1 Regulates Retinoid X Receptor and Inhibits Retinoid Signaling. Cancer Research, 2014, 74, 4364-4377.	0.9	39
29	Cholesterol removal from plaques and elimination from the body: change in paradigm to reduce risk for heart disease. Clinical Lipidology, 2014, 9, 429-440.	0.4	6
30	Genetic Deletion of AEG-1 Prevents Hepatocarcinogenesis. Cancer Research, 2014, 74, 6184-6193.	0.9	47
31	Liver-specific transgenic expression of cholesteryl ester hydrolase reduces atherosclerosis in Ldlrâ^'/â^' mice. Journal of Lipid Research, 2014, 55, 729-738.	4.2	21
32	Cooperation between hepatic cholesteryl ester hydrolase and scavenger receptor BI for hydrolysis of HDL-CE. Journal of Lipid Research, 2013, 54, 3078-3084.	4.2	14
33	Liver-Specific Cholesteryl Ester Hydrolase Deficiency Attenuates Sterol Elimination in the Feces and Increases Atherosclerosis in <i>Ldlr</i> ^{â^'/â^'} Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1795-1802.	2.4	25
34	Lipid metabolism, immunity and metabolic diseases. Clinical Lipidology, 2013, 8, 47-50.	0.4	0
35	Macrophage-specific transgenic expression of cholesteryl ester hydrolase attenuates hepatic lipid accumulation and also improves glucose tolerance in <i>ob/ob</i> mice. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E1283-E1291.	3.5	12
36	Identification of a novel intracellular cholesteryl ester hydrolase (carboxylesterase 3) in human macrophages: compensatory increase in its expression after carboxylesterase 1 silencing. American Journal of Physiology - Cell Physiology, 2012, 303, C427-C435.	4.6	23

3

Shobha Ghosh

#	Article	IF	CITATIONS
37	Early steps in reverse cholesterol transport. Current Opinion in Endocrinology, Diabetes and Obesity, 2012, 19, 136-141.	2.3	34
38	Macrophage cholesterol homeostasis and metabolic diseases: critical role of cholesteryl ester mobilization. Expert Review of Cardiovascular Therapy, 2011, 9, 329-340.	1.5	50
39	Atherosclerotic lesion progression is attenuated by reconstitution with bone marrow from macrophage-specific cholesteryl ester hydrolase transgenic mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R967-R974.	1.8	18
40	Macrophage cholesteryl ester mobilization and atherosclerosis. Vascular Pharmacology, 2010, 52, 1-10.	2.1	112
41	Improved Insulin Sensitivity in High Fat- and High Cholesterol-fed Ldlrâ^'/â^' Mice with Macrophage-specific Transgenic Expression of Cholesteryl Ester Hydrolase. Journal of Biological Chemistry, 2010, 285, 13630-13637.	3.4	43
42	Role of cholesteryl ester hydrolase in atherosclerosis. Clinical Lipidology, 2009, 4, 573-585.	0.4	4
43	Hepatic overexpression of cholesteryl ester hydrolase enhances cholesterol elimination and in vivo reverse cholesterol transport. Journal of Lipid Research, 2008, 49, 2212-2217.	4.2	47
44	Stable overexpression of human macrophage cholesteryl ester hydrolase results in enhanced free cholesterol efflux from human THP1 macrophages. American Journal of Physiology - Cell Physiology, 2007, 292, C405-C412.	4.6	62
45	Macrophage-specific transgenic expression of cholesteryl ester hydrolase significantly reduces atherosclerosis and lesion necrosis in Ldlr–/– mice. Journal of Clinical Investigation, 2007, 117, 2983-2992.	8.2	107
46	Human liver cholesteryl ester hydrolase: cloning, molecular characterization, and role in cellular cholesterol homeostasis. Physiological Genomics, 2005, 23, 304-310.	2.3	59
47	Redistribution of macrophage cholesteryl ester hydrolase from cytoplasm to lipid droplets upon lipid loading. Journal of Lipid Research, 2005, 46, 2114-2121.	4.2	51
48	PPARÎ ³ ligand attenuates PDGF-induced mesangial cell proliferation: Role of MAP kinase. Kidney International, 2003, 64, 52-62.	5.2	51
49	Mobilization of cytoplasmic CE droplets by overexpression of human macrophage cholesteryl ester hydrolase. Journal of Lipid Research, 2003, 44, 1833-1840.	4.2	51
50	Cloning of the Human Cholesteryl Ester Hydrolase Promoter: Identification of Functional Peroxisomal Proliferator-Activated Receptor Responsive Elements. Biochemical and Biophysical Research Communications, 2001, 284, 1065-1070.	2.1	34
51	Cholesteryl ester hydrolase in human monocyte/macrophage: cloning, sequencing, and expression of full-length cDNA. Physiological Genomics, 2000, 2, 1-8.	2.3	99
52	Molecular Cloning and Expression of Rat Lung Carboxylesterase and Its Potential Role in the Detoxification of Organophosphorus Compounds. American Journal of Respiratory Cell and Molecular Biology, 1999, 20, 1201-1208.	2.9	24
53	Age-related changes in catalytic activity, enzyme mass, mRNA, and subcellular distribution of hepatic neutral cholesterol ester hydrolase in female rats. Lipids, 1997, 32, 463-470.	1.7	8
54	Molecular cloning and expression of rat hepatic neutral cholesteryl ester hydrolase. Lipids and Lipid Metabolism, 1995, 1259, 305-312.	2.6	57

#	Article	IF	CITATIONS
55	Rapid three-step purification of a hepatic neutral cholesteryl ester hydrolase which is not the pancreatic enzyme. Lipids, 1991, 26, 793-798.	1.7	33
56	Separation and differential activation of rat liver cytosolic cholesteryl ester hydrolase, triglyceride lipase and retinyl palmitate hydrolase by cholestyramine and protein kinases. Lipids, 1990, 25, 221-225.	1.7	26
57	Activation of rat liver cholesterol ester hydrolase by cAMP-dependent protein kinase and protein kinase kinase C. Lipids, 1989, 24, 733-736.	1.7	52