Guy Tréglia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2140527/publications.pdf

Version: 2024-02-01

162	5,038	38	64
papers	citations	h-index	g-index
162	162	162	2087 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Surface core level spectroscopy of transition metals: A new tool for the determination of their surface structure. Surface Science Reports, 1985, 5, 1-85.	3.8	260
2	Perturbation treatment of correlations in transition metals. Journal De Physique, 1980, 41, 281-289.	1.8	200
3	Segregation and Ordering at Surfaces of Transition Metal Alloys: The Tight-Binding Ising Model. Europhysics Letters, 1988, 7, 575-580.	0.7	165
4	Effect of coulomb correlations on energy bands in ferromagnetic transition metals: Ni, Co and Fe. Journal De Physique, 1982, 43, 341-353.	1.8	152
5	Band gaps and asymptotic behaviour of continued fraction coefficients. Journal of Physics C: Solid State Physics, 1982, 15, 2891-2924.	1.5	144
6	Surface-sandwich segregation in Pt-Ni and Ag-Ni alloys: Two different physical origins for the same phenomenon. Physical Review B, 1987, 35, 4338-4344.	1.1	141
7	Comments on the electronic structure of nickel. Physical Review B, 1980, 21, 3729-3733.	1.1	135
8	Structures of a Ag monolayer deposited on Cu(111), Cu(100), and Cu(110) substrates: An extended tight-binding quenched-molecular-dynamics study. Physical Review B, 1992, 46, 16018-16030.	1.1	129
9	Electronic structure, pairwise interactions and ordering energies in binary f.c.c. transition metal alloys. Solid State Communications, 1981, 39, 149-153.	0.9	126
10	Alloy surfaces: segregation, reconstruction and phase transitions. Computational Materials Science, 1999, 15, 196-235.	1.4	118
11	Phase transitions in surface segregation of PtcNi1â^calloys from tight-binding Ising-model calculations. Physical Review B, 1990, 41, 4422-4434.	1.1	104
12	New magic numbers in metallic clusters: an unexpected metal dependence. Surface Science, 1997, 383, L719-L727.	0.8	102
13	Ag/Cu(111) structure revisited through an extended mechanism for stress relaxation. Physical Review B, 1999, 59, 10910-10917.	1.1	99
14	Correlation effects on Auger spectra in unfilled d band metals. Journal of Physics C: Solid State Physics, 1981, 14, 4347-4355.	1.5	92
15	Ge/Ag(111) semiconductor-on-metal growth: Formation of anAg2Gesurface alloy. Physical Review B, 2000, 62, 16653-16656.	1.1	86
16	Modeling free and supported metallic nanoclusters: structure and dynamics. Phase Transitions, 2004, 77, 101-113.	0.6	83
17	Surface segregation near the temperature of bulk phase separation: Incomplete wetting in Cu(Ag) alloys. Physical Review B, 1991, 44, 5842-5854.	1.1	77
18	Experimental and Theoretical Evidence for a Strong Anisotropy of the Surface Debye-Waller Factor as Determined for a Monolayer of Cobalt on Copper (111) by Surface Extended X-Ray-Absorption Fine Structure. Physical Review Letters, 1986, 56, 1272-1275.	2.9	73

#	Article	IF	Citations
19	Is the segregation-dissolution kinetics driven by a surface local equilibrium? An answer via the kinetic tight-binding Ising model. Surface Science, 1992, 274, 297-305.	0.8	69
20	Anisotropy of diffusion along steps on the (111) faces of gold and silver. Physical Review B, 1994, 50, 12104-12117.	1.1	68
21	How to compare superficial and intergranular segregation? A new analysis within the mixed SMA–TBIM approach. Acta Materialia, 1999, 47, 2705-2715.	3.8	63
22	Study of the W (Ta) core level shifts induced by the adsorption of oxygen on tungsten (tantalum) (110). Journal of Physics C: Solid State Physics, 1981, 14, 3463-3473.	1.5	61
23	Electronic structure and relative stabilities of L12 and D022 ordered structures occuring in transition metal alloys. Solid State Communications, 1983, 45, 585-590.	0.9	60
24	Electronic structure and phase stability of A15 transition metals and alloys. Journal of Physics F: Metal Physics, 1983, 13, 2543-2567.	1.6	60
25	Bulk and surface vibrational and thermodynamical properties of fcc transition and noble metals: a systematic study by the continued fraction technique. Journal De Physique, 1985, 46, 987-1000.	1.8	60
26	Generalised perturbation theory in disordered transition metal alloys: application to the self-consistent calculation of ordering energies. Journal of Physics F: Metal Physics, 1978, 8, 1437-1456.	1.6	58
27	Pt/Co(0001) superstructures in the submonolayer range: A tight-binding quenched-molecular-dynamics study. Physical Review B, 1999, 60, 2781-2788.	1.1	58
28	Surface Segregation in Transition Metal Alloys. Progress of Theoretical Physics Supplement, 1990, 101, 159-180.	0.2	58
29	New opportunities to understand heterogeneous catalysis processes on nanoscale bimetallic particles through synchrotron radiation and theoretical studies. Applied Catalysis A: General, 2000, 200, 47-54.	2.2	52
30	Surface segregation in PtRh alloys revisited in the framework of the tight-binding Ising model. Surface Science, 1990, 236, 398-408.	0.8	50
31	A 'quenched molecular dynamics' approach to the atomic stability of the (100) face of BCC transition metals. Journal of Physics C: Solid State Physics, 1986, 19, 4463-4472.	1.5	49
32	Equilibrium and kinetics in the (111) surface of Cu-Ag alloys: Comparison between mean-field and Monte Carlo calculations. Physical Review B, 1994, 50, 1912-1921.	1.1	48
33	Surface segregation in CuNi and AgNi alloys formulated as an area-preserving map. Surface Science, 1990, 225, 319-330.	0.8	44
34	W4f core level shift study on unreconstructed and hydrogen reconstructed W(100) faces. Journal of Physics C: Solid State Physics, 1982, 15, 4023-4032.	1.5	43
35	A theoretical inquiry into the question of W and Ta (100) atomic structures. Journal of Physics C: Solid State Physics, 1983, 16, 2407-2419.	1.5	43
36	W(100) reconstruction studied by core level spectroscopy. Solid State Communications, 1984, 50, 393-396.	0.9	43

#	Article	IF	Citations
37	Electronic structure and pairwise interactions in substoichiometric transition metal carbides and nitrides. Journal De Physique, 1985, 46, 1001-1015.	1.8	43
38	Tight-binding molecular dynamics study of diffusion on Au and Ag(111). Surface Science, 1995, 331-333, 920-924.	0.8	42
39	Core-level spectroscopy of clean and adsorbate-covered Ta(100). Physical Review B, 1984, 30, 5487-5493.	1.1	40
40	Microstructure of the surfactantlike effect in Ni/Ag(100) and (111). Physical Review B, 1997, 55, $10931-10937$.	1.1	38
41	Site segregation in size-mismatched nanoalloys: Application to Cu–Ag. Surface Science, 2006, 600, 5011-5020.	0.8	38
42	Theoretical investigation of chemical and morphological ordering inPdcCu1â^'cclusters. Physical Review B, 2002, 66, .	1.1	37
43	High-Temperature Study of the Schwoebel Effect in Au(111). Physical Review Letters, 1996, 76, 2109-2112.	2.9	36
44	Thermodynamic derivation of the coherent potential approximation and ordering processes in transition alloys. Journal of Physics F: Metal Physics, 1980, 10, 2137-2146.	1.6	34
45	Influence of surface stress in the missing row reconstruction of fcc transition metals. Surface Science, 2006, 600, 5131-5135.	0.8	34
46	Electronic structure of Pd clusters in the tight-binding approximation: influence of spd-hybridization. Surface Science, 1996, 352-354, 675-679.	0.8	32
47	Charge redistribution at Pd surfaces:Ab initiogrounds for tight-binding interatomic potentials. Physical Review B, 1997, 56, 12161-12166.	1.1	32
48	Ordered surface alloy formation of immiscible metals: The case of Pb deposited on Ag(111). Physical Review B, 2005, 72, .	1.1	32
49	Ordering and surface segregation in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Co</mml:mi><mml:r A theoretical study from surface alloys to nanoalloys. Physical Review B, 2015, 91, .</mml:r </mml:msub></mml:mrow></mml:math>	nr dwl> <mr< td=""><td>ml:31n>1</td></mr<>	ml: 31 n>1
50	Alloy surfaces and surface alloys: from equilibrium to kinetics. Surface Science, 1993, 287-288, 371-376.	0.8	30
51	Is ordering in PtNi alloys induced by spin-orbit interactions?. Journal of Physics F: Metal Physics, 1987, 17, 1935-1944.	1.6	29
52	Multilayer relaxation and reconstruction in bcc and fcc transition and noble metals. Vacuum, 1990, 41, 311-314.	1.6	29
53	Model of surface segregation driving forces and their coupling. Physical Review B, 2008, 78, .	1.1	29
54	On a "surfactant-like―behaviour of deposit. Surface Science, 1994, 307-309, 531-537.	0.8	28

#	Article	IF	Citations
55	Core level spectroscopy of the low index faces of Tantalum. Surface Science, 1985, 162, 46-50.	0.8	27
56	Theoretical study of the Debye-Waller factor in surface extended x-ray-absorption fine structure: Influence of an adsorbed monolayer. Physical Review B, 1986, 34, 6662-6668.	1.1	26
57	Molecular dynamics simulations for the Ag/Cu (111) system: from segregated to constitutive interfacial vacancies. Applied Surface Science, 2000, $162-163$, $219-226$.	3.1	26
58	Relation between surface stress and $(1\tilde{A}-2)$ reconstruction for $(1\ 1\ 0)$ fcc transition metal surfaces. Applied Surface Science, 2003, 212-213, 866-871.	3.1	26
59	Link between the surface wetting in Cu(Ag) and the layer-by-layer dissolution mode of a thick Ag deposit on a Cu substrate. Surface Science, 1995, 331-333, 805-810.	0.8	25
60	Vacancy generation at steps and the kinetics of surface alloy formation. Surface Science, 1996, 364, 453-466.	0.8	25
61	Clean surface studies by photoelectron diffraction analysed within a single scattering theory. Journal De Physique, 1988, 49, 227-236.	1.8	25
62	Further comments on the electronic structure of nickel. Physical Review B, 1980, 22, 6472-6473.	1.1	23
63	An atomistic modelling of the porosity impact on UO2 matrix macroscopic properties. Journal of Nuclear Materials, 2011, 415, 210-216.	1.3	23
64	Layer-by-layer versus surfactant dissolution modes in heteroepitaxy. Physical Review B, 1999, 60, 13890-13901.	1.1	22
65	Intergranular segregation and vibrational effects: A local analysis. Physical Review B, 2000, 61, 14470-14480.	1.1	22
66	Theoretical determination of two critical sizes for strain relaxation during Co/Pt(111) heteroepitaxy. Surface Science, 2000, 446, 272-282.	0.8	22
67	Cu-Ag (111) Polymorphism Induced by Segregation and Advacancies. Physical Review Letters, 2003, 91, 176103.	2.9	22
68	Surface core level spectroscopy of the stepped surface. Solid State Communications, 1984, 52, 635-639.	0.9	21
69	Physical origin of thickness-controlled sequential phase formation during reactive diffusion: Atomistic modeling. Physical Review B, 2010, 82, .	1.1	21
70	Photoelectron spectroscopy study of $Pb/Ag(111)$ in the submonolayer range. Surface Science, 2006, 600, 1227-1230.	0.8	20
71	Atomistic modeling of strain and diffusion at the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext>Si</mml:mtext><mml:mo>/</mml:mo><mml:msub><mml:mrow><mpl:mrow><mpl:mrow><mpl:mtext>Si</mpl:mtext></mpl:mrow></mpl:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	ıml <mark>:m</mark> text:	∙Sið ^Q /mml:m
72	Step-driven molecular adsorption of Sb on Si(111). Surface Science, 1998, 395, 317-325.	0.8	18

#	Article	IF	CITATIONS
73	New trends in heterogeneous catalysis processes on metallic clusters from synchrotron radiation and theoretical studies. Applied Surface Science, 2000, 164, 140-146.	3.1	18
74	Electronic structure of NiZr2C16 compound. Journal of Physics F: Metal Physics, 1982, 12, 441-447.	1.6	17
75	One- and two-hole excitation spectra of the Hubbard model in the non-half-filled case. Physical Review B, 1986, 34, 5101-5110.	1.1	17
76	On the influence of topology on the energy profile in metallic Pd clusters. Surface Science, 1994, 307-309, 735-740.	0.8	17
77	Kinetics of segregation and dissolution in Cu1â^'cAgc and surface phase transition: comparison between mean field and Monte Carlo calculations. Surface Science, 1994, 307-309, 804-809.	0.8	17
78	Surface-induced ordering in phase separation systems: influence of concentration and orientation. Surface Science, 1999, 441, 225-239.	0.8	17
79	New Structures and Atomistic Analysis of the Polymorphism for the $\hat{a}^* = 5$ (210) [001] Tilt Boundary. Journal of Materials Science, 2000, 8, 55-69.	1.2	17
80	Incomplete wetting of very dilute Cu(Ag) alloys by surface segregation. Surface Science, 1991, 251-252, 664-669.	0.8	16
81	Inversion of the core level shift between surface and subsurface atoms of the iridium (100)(1 \tilde{A} — 1) and (100)(5 \tilde{A} — 1) surfaces. Surface Science, 1991, 251-252, 717-721.	0.8	16
82	Topology of a Ag monolayer on a $Cu(111)$ substrate: a tight-binding quenched molecular dynamics study. Surface Science, 1993, 287-288, 476-481.	0.8	16
83	On the various terminations occurring in CuPt-ordered alloys: the TBIM approach. Surface Science, 1994, 307-309, 440-444.	0.8	16
84	Subnanometric Si film reactive diffusion on Ni. Applied Physics Letters, 2009, 95, 023111.	1.5	16
85	One-hole excitation spectra of the one-dimensional Hubbard model. Physical Review B, 1985, 32, 2167-2177.	1.1	15
86	Experimental study of the growth and dissolution of Re/W(110) by core level photoemission spectroscopy: formation of a surface alloy. Surface Science, 1993, 286, 150-167.	0.8	15
87	On a surprising anisotropy of surface segregation in CuPt alloys. Surface Science, 1993, 287-288, 851-856.	0.8	15
88	An unusual composition profile: a LEED–TBIM study of Pt25Cu75(). Surface Science, 2003, 527, 71-79.	0.8	15
89	Unified picture of </a href=" mailto:="" mml:math="">-band"><b .<="" 2011,="" 83,="" alloys.="" b,="" in="" metal="" physical="" review="" shifts="" td="" transition=""><td>1.1</td><td>15</td>	1.1	15
90	Bidimensional phases in Co–Pt surface alloys: A theoretical study of ordering and surface segregation. Surface Science, 2019, 679, 128-138.	0.8	15

#	Article	IF	CITATIONS
91	Influence of Coulomb correlations on the electronic excitations of transition metal surfaces: application to Mo(100) and Ni(100), (110) and (111). Journal of Physics C: Solid State Physics, 1980, 13, 6063-6072.	1.5	14
92	Interpretation of Cr (001) photoemission spectra: influence of correlations. Journal of Physics F: Metal Physics, 1984, 14, 1317-1324.	1.6	14
93	Is the (110) face of tungsten reconstructed?. Solid State Communications, 1983, 47, 279-282.	0.9	13
94	Competition or synergy between surface segregation and bulk ordering: the Cuî—,Pd system. Surface Science, 1996, 352-354, 588-591.	0.8	12
95	On the "exotic―behaviour of the PtSn system. Surface Science, 1997, 377-379, 1033-1037.	0.8	12
96	Misfit dislocation loops or incommensurate structure at an interface: Vibrational and anharmonic effects. Physical Review B, 2002, 66, .	1.1	12
97	Surface and bulk core-level lineshapes in tungsten and tantalum. I. Theory. Journal of Physics C: Solid State Physics, 1987, 20, 2647-2657.	1.5	11
98	Photoelectron diffraction study of the unreconstructed and the hydrogen reconstructed W(110) surfaces. Solid State Communications, 1989, 69, 1015-1018.	0.9	11
99	Local-density approximation study of semiconductor/metal adsorption characteristics: Ge/Ag(100). Physical Review B, 1999, 59, 15337-15345.	1.1	11
100	Compressive strain versus tensile strain. Applied Surface Science, 2001, 177, 238-242.	3.1	11
101	Linear time dependence of the surfactant effect: A local equilibrium under flux. Physical Review B, 2004, 69, .	1.1	11
102	Self-organization of Ge tetramers on Ag(001) surface: A 2D realization of unusual substrate mediated interactions. Surface Science, 2008, 602, 506-510.	0.8	11
103	Strain effect on self-diffusion in silicon: Numerical study. Physical Review B, 2009, 79, .	1.1	11
104	Theoretical investigation of the influence of reaction and diffusion kinetics upon thin-film reactive diffusion. Physical Review B, 2012, 85, .	1.1	11
105	Theoretical investigation of Cottrell atmosphere in silicon. Acta Materialia, 2014, 65, 1-9.	3.8	11
106	Surface and bulk core-level lineshapes in tantalum. II. Experiments. Journal of Physics C: Solid State Physics, 1988, 21, 287-295.	1.5	10
107	Ge deposition on Ag surfaces: Dependence of the adsorption characteristics on the surface orientation. Physical Review B, 2000, 61, 8469-8474.	1.1	10
108	Comment on some â€~â€~new'' results on the multilayer reconstruction of W(100). Physical Review B, 1940, 6440-6441.	989 1.1	9

#	Article	IF	CITATIONS
109	Flux dependence of the surfactant effect in : a theoretical study. Surface Science, 1996, 352-354, 562-566.	0.8	9
110	Step-descent mechanisms on Ag and Au(111). Surface Science, 1997, 377-379, 843-846.	0.8	9
111	Rules for tight-binding calculations in bi-metallic compounds based on density functional theory: the case of Co–Au. Journal of Physics Condensed Matter, 2010, 22, 505503.	0.7	9
112	Coulomb correlations in nickel within the alloy analogy of the Hubbard model. Solid State Communications, 1981, 39, 1113-1116.	0.9	8
113	Hydrogen chemisorption on tungsten (110) studied by core level spectroscopy. Journal of Physics C: Solid State Physics, 1983, 16, 1555-1566.	1.5	8
114	Variation at the surface of mean correlated displacements in fcc transition and noble metals studied by a continued fraction technique. Surface Science, 1985, 162, 126-131.	0.8	8
115	The face dependence of the effective electron mean free path derived from spherical-wave corrections in photoelectron diffraction of $W(110)$ and $W(100)$ surfaces. Journal of Physics Condensed Matter, 1989, 1, 1879-1888.	0.7	8
116	Atomistic study of porosity impact on phonon driven thermal conductivity: Application to uranium dioxide. Journal of Applied Physics, 2014, 115, .	1.1	8
117	Influence of spin-orbit coupling on the atomic stability of the (100) face of 5d BCC transition metals. Solid State Communications, 1985, 55, 961-965.	0.9	7
118	Theoretical study of surface alloy formation through generation and annihilation of vacancies. Surface Science, 1996, 352-354, 552-556.	0.8	7
119	Atomistic simulations of relaxation and reconstruction phenomena in heteroepitaxy: $Co/Au(1\ 1\ 1)$. Applied Surface Science, 2002, 188, 134-139.	3.1	7
120	Kinetics study of antimony adsorption on Si(1 1 1). Applied Surface Science, 2003, 212-213, 715-723.	3.1	7
121	Ordering trends in transition metal alloys from tight-binding electronic structure calculations. Physical Review B, 2011, 84, .	1.1	7
122	Surface Segregation Maps Derived from Tight-Binding Ising Model. Solid State Phenomena, 0, 172-174, 1008-1015.	0.3	7
123	Surface segregation trends in transition metal alloys. Physical Review B, 2013, 88, .	1.1	7
124	Theoretical study of xenon adsorption in UO ₂ nanoporous matrices. Journal of Physics Condensed Matter, 2014, 26, 485015.	0.7	7
125	Environment dependence of magnetic moment and atomic level shifts within tight-binding approximation: An illustration in the case of cobalt. Surface Science, 2016, 646, 261-268.	0.8	7
126	Computation of interatomic Green functions for transition metals using continued fraction techniques. Journal De Physique, 1984, 45, 283-290.	1.8	7

#	Article	IF	Citations
127	Thermodesorption mass spectrometry study of the adsorption of Sb on misoriented Si(111). Surface Science, 1998, 417, 107-120.	0.8	6
128	Sb/Si(111)Adsorption: Hidden Phase Transitions Behind Langmuir-Like Isotherms. Physical Review Letters, 2005, 94, 076101.	2.9	6
129	display="inline"> <mml:mrow><mml:mi mathvariant="normal">Sb</mml:mi><mml:mo><mml:mo><mml:mi mathvariant="normal">Si</mml:mi><mml:mi><mml:mo><mml:mo><mml:mo><mml:mn>111</mml:mn><mml:mo>)</mml:mo>)</mml:mo> (*/mml:mo> (*/mm</mml:mo></mml:mo></mml:mi></mml:mo></mml:mo></mml:mrow>	mml:mo><	/mml:mrow
130	2008, 77, Experimental and theoretical investigation of correlation effects in aggregates of Ni and Pd as a function of their size. Journal of Physics Condensed Matter, 1989, 1, 5875-5885.	0.7	5
131	Comparison of an experimental and a theoretical study of the surface alloy Pt/Cu(111). Journal of Electron Spectroscopy and Related Phenomena, 1994, 68, 357-362.	0.8	5
132	Sb doping of Si molecular-beam epitaxial layers: $\hat{a} \in f$ Influence of the substrate misorientation. Physical Review B, 1997, 56, 7615-7622.	1.1	5
133	Formation of an unexpected ordered two-dimensional Ag2Pb surfacealloy on Ag(111): A SXRD and STM study. Journal of Physics and Chemistry of Solids, 2006, 67, 601-604.	1.9	5
134	Molecular dynamics simulation of silicon oxidization. Thin Solid Films, 2010, 518, 2422-2426.	0.8	5
135	Disentangling coordination and alloy effects in transition-metal nanoalloys from their electronic structure. Physical Review B, 2013, 88, .	1.1	5
136	Electronic structure of CoPt based systems: from bulk to nanoalloys. Journal of Physics Condensed Matter, 2015, 27, 455503.	0.7	5
137	How to derive tight-binding <i>spd </i> potentials? Application to zirconium. Journal of Physics Condensed Matter, 2015, 27, 336301.	0.7	5
138	Intergranular Segregation in Cu(Ag) and Ag(Cu) Systems: Analysis of the Driving Force Using a Tight-Binding Scheme. Materials Science Forum, 1996, 207-209, 701-704.	0.3	4
139	Thermal dependence of surface polymorphism: the Ag/Cu (111) case. Applied Surface Science, 2001, 177, 252-257.	3.1	4
140	Role of sp–d hybridization in the formation of stacking defects at metal surfaces. Surface Science, 2008, 602, 2681-2688.	0.8	4
141	SURFACE ALLOY FORMATION IN THE Cu–Pd(111) SYSTEM: A KTBIM APPROACH. Surface Review and Letters, 1997, 04, 1119-1122.	0.5	3
142	Tight-Bindingn-momentpotential for zirconium hydride atomistic modeling. Metallurgical Research and Technology, 2015, 112, 102.	0.4	3
143	Stress influence on substitutional impurity segregation on dislocation loops in IV–IV semiconductors. Computational Materials Science, 2016, 114, 23-32.	1.4	3
144	Alliage de surface et équilibre local dans le systÃ"me Pd/Cu (111). European Physical Journal Special Topics, 1996, 06, C7-155-C7-158.	0.2	3

#	Article	IF	CITATIONS
145	Combining Solid State Physics Concepts and X-Ray Absorption Spectroscopy to Understand DeNOx Catalysis. Oil and Gas Science and Technology, 2006, 61, 677-689.	1.4	3
146	On the temperature dependence of the surface sandwiches observed in PtNi and AgNi alloys. Vacuum, 1990, 41, 441-445.	1.6	2
147	Theoretical prediction of new dissolution modes during metal heteroepitaxy. Journal of Crystal Growth, 1999, 198-199, 83-88.	0.7	2
148	Effect of magnetism on surface segregation in FeNi alloys. Journal of Physics Condensed Matter, 2016, 28, 064003.	0.7	2
149	Atomistic modelling of residual stress at UO2surfaces. Journal of Physics Condensed Matter, 2016, 28, 015006.	0.7	2
150	Tight-binding modelling of ferromagnetic metals and alloys. Modelling and Simulation in Materials Science and Engineering, 2017, 25, 084004.	0.8	2
151	Tight-binding modeling of interstitial ordering processes in metals: Application to zirconium hydrides. Physical Review B, 2020, 101, .	1.1	2
152	An atomistic approach for stress relaxation in materials., 2001,, 119-150.		2
153	Surface Segregation in Transition Metal Alloys: From Electronic Structure to Phase Portraits. Progress of Theoretical Physics Supplement, 2013, 101, 159-180.	0.2	2
154	One- and two-hole excitation spectra of the 1d Hubbard model. Journal of Magnetism and Magnetic Materials, 1986, 54-57, 1029-1030.	1.0	1
155	Structure and properties of nanoscale materials: theory and atomistic computer simulation. International Journal of Nanotechnology, 2012, 9, 576.	0.1	1
156	Atomistic Model for Ge Condensation under SiGe Oxidation. Defect and Diffusion Forum, 0, 363, 210-216.	0.4	1
157	Theoretical study of xenon adsorption on UO ₂ surfaces. Journal of Physics Communications, 2018, 2, 035041.	0.5	1
158	Photoemission from transition metals. Vacuum, 1981, 31, 453-454.	1.6	0
159	Theoretical and Experimental Evidences of Sequential Phase Formation during Sub-Nanometric-Thick Film Reactive Diffusion. Solid State Phenomena, 0, 172-174, 633-639.	0.3	0
160	Nanometric-Size Effect upon Diffusion and Reaction in Semiconductors: Experimental and Theoretical Investigations. Defect and Diffusion Forum, 0, 323-325, 433-438.	0.4	0
161	Electronic Structure of Nanoalloys: A Guide of Useful Concepts and Tools. Engineering Materials, 2012, , 159-195.	0.3	0
162	Cinétique de dissolution d'un dépôt Fe/Cu. European Physical Journal Special Topics, 1996, 06, C7-151-C7-154.	0.2	0