Tomoyasu Noji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2140035/publications.pdf

Version: 2024-02-01

567281 677142 31 548 15 22 citations h-index g-index papers 32 32 32 765 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Photosynthetic Oxygen Evolution in Mesoporous Silica Material: Adsorption of Photosystem II Reaction Center Complex into 23 nm Nanopores in SBA. Langmuir, 2011, 27, 705-713.	3.5	61
2	Extension of Light-Harvesting Ability of Photosynthetic Light-Harvesting Complex 2 (LH2) through Ultrafast Energy Transfer from Covalently Attached Artificial Chromophores. Journal of the American Chemical Society, 2015, 137, 13121-13129.	13.7	57
3	Photosystem II–Gold Nanoparticle Conjugate as a Nanodevice for the Development of Artificial Light-Driven Water-Splitting Systems. Journal of Physical Chemistry Letters, 2011, 2, 2448-2452.	4.6	52
4	CO ₂ Photoreduction by Formate Dehydrogenase and a Ru-Complex in a Nanoporous Glass Reactor. ACS Applied Materials & Samp; Interfaces, 2017, 9, 3260-3265.	8.0	33
5	Influence of Phospholipid Composition on Self-Assembly and Energy-Transfer Efficiency in Networks of Light-Harvesting 2 Complexes. Journal of Physical Chemistry B, 2013, 117, 10395-10404.	2.6	31
6	Kinetically Distinct Three Red Chlorophylls in Photosystem I of <i>Thermosynechococcus elongatus</i> Revealed by Femtosecond Time-Resolved Fluorescence Spectroscopy at 15 K. Journal of Physical Chemistry B, 2010, 114, 2954-2963.	2.6	28
7	Harvesting Far-Red Light by Chlorophyll <i>f</i> i>in Photosystems I and II of Unicellular Cyanobacterium strain KC1. Plant and Cell Physiology, 2015, 56, 2024-2034.	3.1	25
8	Efficient hydrogen production using photosystem I enhanced by artificial light harvesting dye. Photochemical and Photobiological Sciences, 2019, 18, 309-313.	2.9	25
9	A sublethal ATP11A mutation associated with neurological deterioration causes aberrant phosphatidylcholine flipping in plasma membranes. Journal of Clinical Investigation, 2021, 131, .	8.2	25
10	Light-Driven Hydrogen Production by Hydrogenases and a Ru-Complex inside a Nanoporous Glass Plate under Aerobic External Conditions. Journal of Physical Chemistry Letters, 2014, 5, 2402-2407.	4.6	23
11	Lipid-Controlled Stabilization of Charge-Separated States (P ⁺ Q _B [–]) and Photocurrent Generation Activity of a Light-Harvesting–Reaction Center Core Complex (LH1-RC) from <i>Rhodopseudomonas palustris</i> Journal of Physical Chemistry B, 2018, 122, 1066-1080.	2.6	18
12	Enhancement of Photocurrent by Integration of an Artificial Light-Harvesting Antenna with a Photosystem I Photovoltaic Device. ACS Applied Energy Materials, 2019, 2, 3986-3990.	5.1	18
13	Design of New Extraction Surfactants for Membrane Proteins from Peptide Gemini Surfactants. Bioconjugate Chemistry, 2016, 27, 2469-2479.	3.6	17
14	Green-Sensitive, Long-Lived, Step-Functional Anion Channelrhodopsin-2 Variant as a High-Potential Neural Silencing Tool. Journal of Physical Chemistry Letters, 2020, 11, 6214-6218.	4.6	17
15	Energy transfer and clustering of photosynthetic light-harvesting complexes in reconstituted lipid membranes. Chemical Physics, 2013, 419, 200-204.	1.9	16
16	Application of Peptide Gemini Surfactants as Novel Solubilization Surfactants for Photosystems I and II of Cyanobacteria. Langmuir, 2013, 29, 11667-11680.	3.5	15
17	Vectorial Proton Transport Mechanism of RxR, a Phylogenetically Distinct and Thermally Stable Microbial Rhodopsin. Scientific Reports, 2020, 10, 282.	3.3	14
18	Mechanism of absorption wavelength shifts in anion channelrhodopsin-1 mutants. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148349.	1.0	13

#	Article	IF	CITATIONS
19	Immobilization of photosystem I or II complexes on electrodes for preparation of photoenergy-conversion devices. Research on Chemical Intermediates, 2014, 40, 3287-3293.	2.7	10
20	Direct Energy Transfer from Allophycocyanin-Free Rod-Type CpcL-Phycobilisome to Photosystem I. Journal of Physical Chemistry Letters, 2021, 12, 6692-6697.	4.6	10
21	Alumina Plate Containing Photosystem I Reaction Center Complex Oriented inside Plate-Penetrating Silica Nanopores. Journal of Physical Chemistry B, 2013, 117, 9785-9792.	2.6	7
22	Creation of Cross-Linked Bilayer Membranes That Can Incorporate Membrane Proteins from Oligo-Asp-Based Peptide Gemini Surfactants. Langmuir, 2013, 29, 11695-11704.	3.5	7
23	Oxygen-Evolving Porous Glass Plates Containing the Photosynthetic Photosystem II Pigment–Protein Complex. Langmuir, 2016, 32, 7796-7805.	3.5	7
24	Rational design of novel high molecular weight solubilization surfactants for membrane proteins from the peptide gemini surfactants (PG-surfactants). Tetrahedron, 2016, 72, 6898-6908.	1.9	5
25	Light-induced hydrogen production by photosystem I–Pt nanoparticle conjugates immobilized in porous glass plate nanopores. Research on Chemical Intermediates, 2016, 42, 7731-7742.	2.7	4
26	Synthesis and characterization of chemically-reactive solubilization surfactants for membrane proteins and preparation of membrane protein hydrogel microfibers. Colloids and Interface Science Communications, 2019, 32, 100199.	4.1	3
27	Photocatalytic activity of the light-harvesting complex of photosystem II (LHCII) monomer. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 406, 112926.	3.9	3
28	Creation of Fibrous Nanotubes of Green Fluorescent Protein by Conjugation with pH-Responsive Polymer, Poly(2-vinylpyridine), and Use of Microfluidic Synthesis. Chemistry Letters, 2013, 42, 495-497.	1.3	2
29	Durability of oxygen evolution of photosystem II incorporated into lipid bilayers. Research on Chemical Intermediates, 2014, 40, 3231-3241.	2.7	1
30	Design of PG-Surfactants Bearing Polyacrylamide Polymer Chain to Solubilize Membrane Proteins in a Surfactant-Free Buffer. International Journal of Molecular Sciences, 2021, 22, 1524.	4.1	1
31	Structureâ€"function relationships of the supramolecular assembly of the bacterial photosynthetic antenna complexes in lipid membranes. Research on Chemical Intermediates, 2014, 40, 3243-3256.	2.7	O