
Shan Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/213983/publications.pdf Version: 2024-02-01

SHAN ZHOU

#	Article	IF	CITATIONS
1	Overflow Control for Sustainable Development by Superwetting Surface with Biomimetic Structure. Chemical Reviews, 2023, 123, 2276-2310.	47.7	32
2	Mechanism and performance relevance of nanomorphogenesis in polyamide films revealed by quantitative 3D imaging and machine learning. Science Advances, 2022, 8, eabk1888.	10.3	22
3	Spectroscopic investigation of the structure of a pyrrolidinium-based ionic liquid at electrified interfaces. Journal of Chemical Physics, 2022, 156, 114701.	3.0	3
4	Bioinspired Surface with Superwettability for Controllable Liquid Dynamics. Advanced Materials Interfaces, 2021, 8, 2000824.	3.7	21
5	Ultrasensitive Detection of Hydrogen Peroxide Using Bi ₂ Te ₃ Electrochemical Sensors. ACS Applied Materials & Interfaces, 2021, 13, 4761-4767.	8.0	34
6	Kinetically Controlled Synthesis of Pd–Cu Janus Nanocrystals with Enriched Surface Structures and Enhanced Catalytic Activities toward CO ₂ Reduction. Journal of the American Chemical Society, 2021, 143, 149-162.	13.7	77
7	Three-Dimensional Molecular Mapping of Ionic Liquids at Electrified Interfaces. ACS Nano, 2020, 14, 17515-17523.	14.6	47
8	Liquid harvesting and transport on multiscaled curvatures. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23436-23442.	7.1	78
9	Droplets Crawling on Peristomeâ€Mimetic Surfaces. Advanced Functional Materials, 2020, 30, 1908066.	14.9	15
10	Decahedral nanocrystals of noble metals: Synthesis, characterization, and applications. Materials Today, 2019, 22, 108-131.	14.2	92
11	Tip-Patched Nanoprisms from Formation of Ligand Islands. Journal of the American Chemical Society, 2019, 141, 11796-11800.	13.7	54
12	Programmable unidirectional liquid transport on peristome-mimetic surfaces under liquid environments. Journal of Materials Chemistry A, 2019, 7, 18244-18248.	10.3	22
13	A Quantitative Analysis of the Reduction Kinetics Involved in the Synthesis of Au@Pd Concave Nanocubes. Chemistry - A European Journal, 2019, 25, 16397-16404.	3.3	11
14	3D Mapping of the Structural Transitions in Wrinkled 2D Membranes: Implications for Reconfigurable Electronics, Memristors, and Bioelectronic Interfaces. ACS Applied Nano Materials, 2019, 2, 5779-5786.	5.0	7
15	Au@Cu Core–Shell Nanocubes with Controllable Sizes in the Range of 20–30 nm for Applications in Catalysis and Plasmonics. ACS Applied Nano Materials, 2019, 2, 1533-1540.	5.0	22
16	Site-selective growth of Ag nanocubes for sharpening their corners and edges, followed by elongation into nanobars through symmetry reduction. Journal of Materials Chemistry C, 2018, 6, 1384-1392.	5.5	27
17	Quantitative analysis of the reduction kinetics of a Pt(II) precursor in the context of Pt nanocrystal synthesis. Chinese Journal of Chemical Physics, 2018, 31, 370-374.	1.3	11
18	A Rationally Designed Route to the One-Pot Synthesis of Right Bipyramidal Nanocrystals of Copper. Chemistry of Materials, 2018, 30, 6469-6477.	6.7	28

Shan Zhou

#	Article	IF	CITATIONS
19	Synthesis of Pt nanocrystals with different shapes using the same protocol to optimize their catalytic activity toward oxygen reduction. Materials Today, 2018, 21, 834-844.	14.2	58
20	Enabling Complete Ligand Exchange on the Surface of Gold Nanocrystals through the Deposition and Then Etching of Silver. Journal of the American Chemical Society, 2018, 140, 11898-11901.	13.7	53
21	Synthesis of Ru Icosahedral Nanocages with a Face-Centered-Cubic Structure and Evaluation of Their Catalytic Properties. ACS Catalysis, 2018, 8, 6948-6960.	11.2	66
22	Facile synthesis of gold trisoctahedral nanocrystals with controllable sizes and dihedral angles. Nanoscale, 2018, 10, 11034-11042.	5.6	13
23	Facile Synthesis of Silver Icosahedral Nanocrystals with Uniform and Controllable Sizes. ChemNanoMat, 2018, 4, 1071-1077.	2.8	9
24	Gold icosahedral nanocages: Facile synthesis, optical properties, and fragmentation under ultrasonication. Chemical Physics Letters, 2017, 683, 613-618.	2.6	13
25	Facile Synthesis of Pd@Pt _{3–4L} Core–Shell Octahedra with a Clean Surface and Thus Enhanced Activity toward Oxygen Reduction. ChemCatChem, 2017, 9, 414-419.	3.7	18
26	Toward a Quantitative Understanding of the Reduction Pathways of a Salt Precursor in the Synthesis of Metal Nanocrystals. Nano Letters, 2017, 17, 334-340.	9.1	87
27	Icosahedral nanocrystals of noble metals: Synthesis and applications. Nano Today, 2017, 15, 121-144.	11.9	83
28	Autocatalytic surface reduction and its role in controlling seed-mediated growth of colloidal metal nanocrystals. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13619-13624.	7.1	64
29	Shape-controlled synthesis of CO-free Pd nanocrystals with the use of formic acid as a reducing agent. Chemical Communications, 2016, 52, 12594-12597.	4.1	17
30	Facile Synthesis of Silver Nanocubes with Sharp Corners and Edges in an Aqueous Solution. ACS Nano, 2016, 10, 9861-9870.	14.6	149
31	Oxidative etching for controlled synthesis of metal nanocrystals: atomic addition and subtraction. Chemical Society Reviews, 2014, 43, 6288.	38.1	229
32	Tunable Oxygen Activation for Catalytic Organic Oxidation: Schottky Junction versus Plasmonic Effects. Angewandte Chemie - International Edition, 2014, 53, 3205-3209.	13.8	136