Sang-Woon Shin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2139500/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolutionary Dynamics of Immune-Related Genes and Pathways in Disease-Vector Mosquitoes. Science, 2007, 316, 1738-1743.	12.6	550
2	Pathogenomics of <i>Culex quinquefasciatus</i> and Meta-Analysis of Infection Responses to Diverse Pathogens. Science, 2010, 330, 88-90.	12.6	150
3	Distinct Melanization Pathways in the Mosquito Aedes aegypti. Immunity, 2010, 32, 41-53.	14.3	125
4	Juvenile hormone and its receptor, methoprene-tolerant, control the dynamics of mosquito gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2173-81.	7.1	124
5	Blocking of <i>Plasmodium</i> transmission by cooperative action of Cecropin A and Defensin A in transgenic <i>Aedes aegypti</i> mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8111-8116.	7.1	122
6	bHLH-PAS heterodimer of methoprene-tolerant and Cycle mediates circadian expression of juvenile hormone-induced mosquito genes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16576-16581.	7.1	117
7	REL1, a Homologue of Drosophila Dorsal, Regulates Toll Antifungal Immune Pathway in the Female Mosquito Aedes aegypti. Journal of Biological Chemistry, 2005, 280, 16499-16507.	3.4	104
8	Regulation of Lipid Metabolism Genes, Lipid Carrier Protein Lipophorin, and Its Receptor during Immune Challenge in the Mosquito Aedes aegypti. Journal of Biological Chemistry, 2006, 281, 8426-8435.	3.4	98
9	Transcriptome Analysis of Aedes aegypti Transgenic Mosquitoes with Altered Immunity. PLoS Pathogens, 2011, 7, e1002394.	4.7	94
10	Transgenic alteration of Toll immune pathway in the female mosquito Aedes aegypti. Proceedings of the United States of America, 2005, 102, 13568-13573.	7.1	88
11	A Toll Receptor and a Cytokine, Toll5A and Spz1C, Are Involved in Toll Antifungal Immune Signaling in the Mosquito Aedes aegypti. Journal of Biological Chemistry, 2006, 281, 39388-39395.	3.4	88
12	Identification of plant compounds that disrupt the insect juvenile hormone receptor complex. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1733-1738.	7.1	75
13	Relish-mediated immune deficiency in the transgenic mosquito Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2616-2621.	7.1	70
14	Characterization of three alternatively spliced isoforms of the Rel/NF-ÂB transcription factor Relish from the mosquito Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9978-9983.	7.1	63
15	Mosquito RUNX4 in the immune regulation of PPO gene expression and its effect on avian malaria parasite infection. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18454-18459.	7.1	59
16	Hairy and Groucho mediate the action of juvenile hormone receptor Methoprene-tolerant in gene repression. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E735-43.	7.1	55
17	Two carbohydrate recognition domains ofHyphantria cunealectin bind to bacterial lipopolysaccharides through O-specific chain. FEBS Letters, 2000, 467, 70-74.	2.8	40
18	Analysis of Genes Expression of Spodoptera exigua Larvae upon AcMNPV Infection. PLoS ONE, 2012, 7, e42462.	2.5	40

SANG-WOON SHIN

#	Article	IF	CITATIONS
19	A new factor in the <i>Aedes aegypti</i> immune response: CLSP2 modulates melanization. EMBO Reports, 2011, 12, 938-943.	4.5	33
20	Immunological Detection of Serpin in the Fall Webworm, Hyphantria cunea and Its Inhibitory Activity on the Prophenoloxidase System. Molecules and Cells, 2000, 10, 186-192.	2.6	22
21	Cysteine Protease Profiles of the Medicinal Plant Calotropis procera R. Br. Revealed by De Novo Transcriptome Analysis. PLoS ONE, 2015, 10, e0119328.	2.5	20
22	Conifer Diterpene Resin Acids Disrupt Juvenile Hormone-Mediated Endocrine Regulation in the Indian Meal Moth Plodia interpunctella. Journal of Chemical Ecology, 2017, 43, 703-711.	1.8	18
23	Immunological Detection of Serpin in the Fall Webworm,. Molecules and Cells, 2000, 10, 186.	2.6	17
24	Protein purification and nucleotide sequence of a lysozyme from the bacteria-induced larvae of the fall webworm,Hyphantria cunea. , 1997, 35, 335-345.		14
25	Complete genome sequence of a novel picorna-like virus isolated from Spodoptera exigua. Journal of Asia-Pacific Entomology, 2012, 15, 259-263.	0.9	12
26	Species-Specific Interactions between Plant Metabolites and Insect Juvenile Hormone Receptors. Journal of Chemical Ecology, 2018, 44, 1022-1029.	1.8	6
27	A plant diterpene counteracts juvenile hormone-mediated gene regulation during Drosophila melanogaster larval development. PLoS ONE, 2018, 13, e0200706.	2.5	5
28	Inducible Expression of Several Drosophila melanogaster Genes Encoding Juvenile Hormone Binding Proteins by a Plant Diterpene Secondary Metabolite, Methyl Lucidone. Insects, 2022, 13, 420.	2.2	3
29	Screening of Juvenile Hormone Disruptors from Myzus persicae using Yeast Î ² -galactosidase Assay. Nong'yag Gwahag Hoeii, 2020, 24, 241-246.	0.5	0