## Eric N Powell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2139479/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Relative rates of shell dissolution and net sediment accumulation ―a commentary: can shell beds form by the gradual accumulation of biogenic debris on the sea floor?. Lethaia, 1989, 22, 207-212.                           | 0.6 | 192       |
| 2  | Taphonomic signature as a function of environmental process: Shells and shell beds in a<br>hurricane-influenced inlet on the Texas coast. Palaeogeography, Palaeoclimatology, Palaeoecology,<br>1989, 72, 317-356.           | 1.0 | 160       |
| 3  | Time-averaging, taphonomy, and their impact on paleocommunity reconstruction: Death assemblages in<br>Texas bays. Bulletin of the Geological Society of America, 1986, 97, 428.                                              | 1.6 | 140       |
| 4  | How long does oyster shell last on an oyster reef?. Estuarine, Coastal and Shelf Science, 2006, 69, 531-542.                                                                                                                 | 0.9 | 95        |
| 5  | Distribution of Perkinsus marinus in Gulf Coast Oyster Populations. Estuaries and Coasts, 1989, 12, 82.                                                                                                                      | 1.7 | 89        |
| 6  | IS OYSTER SHELL A SUSTAINABLE ESTUARINE RESOURCE?. Journal of Shellfish Research, 2007, 26, 181-194.                                                                                                                         | 0.3 | 79        |
| 7  | Long-term Trends in Oyster Population Dynamics in Delaware Bay: Regime Shifts and Response to<br>Disease. Journal of Shellfish Research, 2008, 27, 729-755.                                                                  | 0.3 | 79        |
| 8  | Rates of Burial and Disturbance of Experimentally-Deployed Molluscs: Implications for Preservation<br>Potential. Palaios, 1999, 14, 337.                                                                                     | 0.6 | 74        |
| 9  | Ecosystem effects of shell aggregations and cycling in coastal waters: an example of Chesapeake Bay oyster reefs. Ecology, 2013, 94, 895-903.                                                                                | 1.5 | 68        |
| 10 | Biomass: Is it a useful tool in paleocommunity reconstruction?. Lethaia, 1985, 18, 209-232.                                                                                                                                  | 0.6 | 66        |
| 11 | When Is an "Old" Shell Really Old?. Journal of Geology, 1990, 98, 823-844.                                                                                                                                                   | 0.7 | 65        |
| 12 | Relationship of parasites and pathologies to contaminant body burden in sentinel bivalves: NOAA<br>Status and Trends â€~Mussel Watch' Program. Marine Environmental Research, 2008, 65, 101-127.                             | 1.1 | 64        |
| 13 | Modeling oyster populations. V. Declining phytoplankton stocks and the population dynamics of American oyster (Crassostrea virginica) populations. Fisheries Research, 1995, 24, 199-222.                                    | 0.9 | 63        |
| 14 | Local variability of taphonomic attributes in a parautochthonous assemblage: can taphonomic<br>signature distinguish a heterogeneous environment?. Journal of Paleontology, 1990, 64, 648-658.                               | 0.5 | 58        |
| 15 | Are molluscan maximum life spans determined by long-term cycles in benthic communities?. Oecologia, 1985, 67, 177-182.                                                                                                       | 0.9 | 57        |
| 16 | The rise and fall of <i>Crassostrea virginica</i> oyster reefs: The role of disease and fishing in their demise and a vignette on their management. Journal of Marine Research, 2012, 70, 505-558.                           | 0.3 | 55        |
| 17 | Taphonomic degradation of molluscan remains during thirteen years on the continental shelf and<br>slope of the northwestern Gulf of Mexico. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011,<br>312, 209-232.        | 1.0 | 53        |
| 18 | Differential modulation of eastern oyster (Crassostrea virginica) disease parasites by the<br>El-Niño-Southern Oscillation and the North Atlantic Oscillation. International Journal of Earth<br>Sciences, 2009, 98, 99-114. | 0.9 | 52        |

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A model for death assemblage formation: Can sediment shelliness be explained?. Journal of Marine<br>Research, 1992, 50, 229-265.                                                                                                        | 0.3 | 51        |
| 20 | Long-term dynamics in Atlantic surfclam ( Spisula solidissima ) populations: The role of bottom water temperature. Journal of Marine Systems, 2015, 141, 136-148.                                                                       | 0.9 | 51        |
| 21 | A POPULATION DYNAMICS MODEL OF THE HARD CLAM, MERCENARIA MERCENARIA: DEVELOPMENT OF THE AGE- AND LENGTH-FREQUENCY STRUCTURE OF THE POPULATION. Journal of Shellfish Research, 2006, 25, 417-444.                                        | 0.3 | 49        |
| 22 | Taphonomic Rates of Molluscan Shells Placed in Autochthonous Assemblages on the Louisiana<br>Continental Slope. Palaios, 1994, 9, 60.                                                                                                   | 0.6 | 48        |
| 23 | Oyster Disease and Climate Change. Are Yearly Changes in <i>Perkinsus marinus</i> Parasitism in<br>Oysters ( <i>Crassostrea virginica</i> ) Controlled by Climatic Cycles in the Gulf of Mexico?. Marine<br>Ecology, 1992, 13, 243-270. | 0.4 | 47        |
| 24 | Assessing transportation by the covariance of species with comments on contagious and random distributions. Lethaia, 1986, 19, 1-22.                                                                                                    | 0.6 | 46        |
| 25 | Parasites of sentinel bivalves in the NOAA status and trends program: Distribution and relationship to contaminant body burden. Marine Pollution Bulletin, 1998, 37, 45-55.                                                             | 2.3 | 45        |
| 26 | Distinguishing Autochthony, Parautochthony and Allochthony Using Taphofacies Analysis: Can Cold<br>Seep Assemblages Be Discriminated from Assemblages of the Nearshore and Continental Shelf?.<br>Palaios, 1992, 7, 409.                | 0.6 | 44        |
| 27 | Preferential dissolution of carbonate shells driven by petroleum seep activity in the Gulf of Mexico.<br>Earth and Planetary Science Letters, 2006, 248, 227-243.                                                                       | 1.8 | 43        |
| 28 | Influence of parasitism in controlling the health, reproduction and PAH body burden of petroleum seep mussels. Deep-Sea Research Part I: Oceanographic Research Papers, 1999, 46, 2053-2078.                                            | 0.6 | 42        |
| 29 | Trends and change points in surface and bottom thermal environments of the US Northeast<br>Continental Shelf Ecosystem. Fisheries Oceanography, 2020, 29, 396-414.                                                                      | 0.9 | 42        |
| 30 | DISTRIBUTION OF PARASITES AND PATHOLOGIES IN SENTINEL BIVALVES: NOAA STATUS AND TRENDS<br>"MUSSEL WATCH―PROGRAM. Journal of Shellfish Research, 2007, 26, 1115-1151.                                                                    | 0.3 | 39        |
| 31 | Gradients and patterns of sclerobionts on experimentally deployed bivalve shells: Synopsis of bathymetric and temporal trends on a decadal time scale. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 312, 278-304.           | 1.0 | 38        |
| 32 | Ecophysiological dynamic model of individual growth of Ruditapes philippinarum. Aquaculture, 2007, 266, 130-143.                                                                                                                        | 1.7 | 35        |
| 33 | Molluscan Shell Condition After Eight Years on the Sea Floor—Taphonomy in the Gulf of Mexico and<br>Bahamas. Journal of Shellfish Research, 2008, 27, 191-225.                                                                          | 0.3 | 34        |
| 34 | Modeling larval connectivity of the Atlantic surfclams within the Middle Atlantic Bight: Model development, larval dispersal and metapopulation connectivity. Estuarine, Coastal and Shelf Science, 2015, 153, 38-53.                   | 0.9 | 34        |
| 35 | Autochthonous death assemblages from chemoautotrophic communities at petroleum seeps:<br>Palaeoproduction, energy flow, and implications for the fossil record. Historical Biology, 1997, 12,<br>165-198.                               | 0.7 | 33        |
| 36 | Geographical Trends in Weight and Condition Index of Surfclams ( <i>Spisula solidissima</i> ) in the<br>Mid-Atlantic Bight. Journal of Shellfish Research, 2010, 29, 117-128.                                                           | 0.3 | 33        |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Long-term history of chemoautotrophic clam-dominated faunas of petroleum seeps in the<br>Northwestern Gulf of Mexico. Facies, 2000, 43, 177-204.                                                                                                   | 0.7 | 32        |
| 38 | Hydrates, oil seepage, and chemosynthetic ecosystems on the Gulf of Mexico Slope: An update. Eos, 1987, 68, 498-499.                                                                                                                               | 0.1 | 31        |
| 39 | UNDERSTANDING THE SUCCESS AND FAILURE OF OYSTER POPULATIONS: CLIMATIC CYCLES AND PERKINSUS MARINUS. Journal of Shellfish Research, 2006, 25, 83-93.                                                                                                | 0.3 | 31        |
| 40 | A Shell-Neutral Modeling Approach Yields Sustainable Oyster Harvest Estimates: A Retrospective<br>Analysis of the Louisiana State Primary Seed Grounds. Journal of Shellfish Research, 2012, 31, 1103-1112.                                        | 0.3 | 31        |
| 41 | Description of a Quantitative Approach to Taphonomy and Taphofacies Analysis: All Dead Things Are<br>Not Created Equal. The Paleontological Society Special Publications, 1990, 5, 328-350.                                                        | 0.0 | 29        |
| 42 | Preservation of Mollusca in Copano Bay, Texas. The long-term record. Palaeogeography,<br>Palaeoclimatology, Palaeoecology, 1992, 95, 209-228.                                                                                                      | 1.0 | 29        |
| 43 | The Potential for Oysters, <i>Crassostrea virginica</i> , to Develop Resistance to Dermo Disease in the<br>Field: Evaluation using a Gene-Based Population Dynamics Model. Journal of Shellfish Research, 2011,<br>30, 685-712.                    | 0.3 | 29        |
| 44 | Understanding the Success and Failure of Oyster Populations: Periodicities of <i>Perkinsus<br/>marinus</i> , and Oyster Recruitment, Mortality, and Size. Journal of Shellfish Research, 2012, 31,<br>635-646.                                     | 0.3 | 29        |
| 45 | The Distribution ofPerkinsus marinus in Gulf Coast Oysters: Its Relationship with Temperature,<br>Reproduction, and Pollutant Body Burden. International Review of Hydrobiology, 1990, 75, 533-550.                                                | 0.6 | 28        |
| 46 | A modeling study of the effects of size- and depth-dependent predation on larval survival. Journal of<br>Plankton Research, 1997, 19, 1583-1598.                                                                                                   | 0.8 | 27        |
| 47 | Onshore–offshore trends in community structural attributes: death assemblages from the shallow continental shelf of Texas. Continental Shelf Research, 1999, 19, 717-756.                                                                          | 0.9 | 26        |
| 48 | Accommodation of the sex-ratio in eastern oysters <i>Crassostrea virginica</i> to variation in growth and mortality across the estuarine salinity gradient. Journal of the Marine Biological Association of the United Kingdom, 2013, 93, 533-555. | 0.4 | 26        |
| 49 | The effects of salinity change on the free amino acid pools of two nereid polychaetes, Neanthes<br>succinea and Leonereis culveri. Comparative Biochemistry and Physiology A, Comparative Physiology,<br>1981, 70, 631-637.                        | 0.7 | 23        |
| 50 | Atlantic surfclam connectivity within the Middle Atlantic Bight: Mechanisms underlying variation in<br>larval transport and settlement. Estuarine, Coastal and Shelf Science, 2016, 173, 65-78.                                                    | 0.9 | 23        |
| 51 | Development of an Age—Frequency Distribution for Ocean Quahogs ( <i>Arctica islandica</i> ) on<br>Georges Bank. Journal of Shellfish Research, 2017, 36, 41-53.                                                                                    | 0.3 | 22        |
| 52 | An Overview of Factors Affecting Distribution of the Atlantic Surfclam ( <i>Spisula solidissima</i> ), a<br>Continental Shelf Biomass Dominant, During a Period of Climate Change. Journal of Shellfish<br>Research, 2018, 37, 821-831.            | 0.3 | 22        |
| 53 | The influence of molluscan taxon on taphofacies development over a broad range of environments of preservation: The SSETI experience. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 312, 233-264.                                       | 1.0 | 21        |
| 54 | Generation time and the stability of sex-determining alleles in oyster populations as deduced using a gene-based population dynamics model. Journal of Theoretical Biology, 2011, 271, 27-43.                                                      | 0.8 | 21        |

| #  | Article                                                                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Variations in eastern oyster ( <i>Crassostrea virginica</i> ) sex-ratios from three Virginia estuaries:<br>protandry, growth and demographics. Journal of the Marine Biological Association of the United<br>Kingdom, 2013, 93, 519-531.                                                                                                  | 0.4 | 21        |
| 56 | The death assemblage as a marker for habitat and an indicator of climate change: Georges Bank, surfclams and ocean quahogs. Continental Shelf Research, 2017, 142, 14-31.                                                                                                                                                                 | 0.9 | 21        |
| 57 | The relationship of bionts and taphonomic processes in molluscan taphofacies formation on the continental shelf and slope: eight-year trends: Gulf of Mexico and Bahamas. Facies, 2011, 57, 15-37.                                                                                                                                        | 0.7 | 20        |
| 58 | Ocean quahogs (Arctica islandica) and Atlantic surfclams (Spisula solidissima) on the Mid-Atlantic<br>Bight continental shelf and Georges Bank: The death assemblage as a recorder of climate change and<br>the reorganization of the continental shelf benthos. Palaeogeography, Palaeoclimatology,<br>Palaeoecology, 2020, 537, 109205. | 1.0 | 20        |
| 59 | Two-hundred year record of increasing growth rates for ocean quahogs (Arctica islandica) from the northwestern Atlantic Ocean. Journal of Experimental Marine Biology and Ecology, 2018, 503, 8-22.                                                                                                                                       | 0.7 | 19        |
| 60 | The Ectoparasitic Gastropod Boonea (= Odostomia) impressa: Population Ecology and the Influence of<br>Parasitism on Oyster Growth Rates. Marine Ecology, 1984, 5, 283-299.                                                                                                                                                                | 0.4 | 18        |
| 61 | Can we estimate molluscan abundance and biomass on the continental shelf?. Estuarine, Coastal and Shelf Science, 2017, 198, 213-224.                                                                                                                                                                                                      | 0.9 | 18        |
| 62 | What Is Going on with Perkinsus marinus in the Gulf of Mexico?. Estuaries and Coasts, 2017, 40, 105-120.                                                                                                                                                                                                                                  | 1.0 | 18        |
| 63 | How well do we know the infaunal biomass of the continental shelf?. Continental Shelf Research, 2016, 115, 27-32.                                                                                                                                                                                                                         | 0.9 | 17        |
| 64 | Effects of Gas-Producing Platforms on Continental Shelf Megafauna in the Northwest Gulf of<br>Mexico: Reproductive Status and Health. International Review of Hydrobiology, 2000, 85, 293-323.                                                                                                                                            | 0.5 | 13        |
| 65 | The Atlantic surfclam fishery and offshore wind energy development: 2. Assessing economic impacts.<br>ICES Journal of Marine Science, 2022, 79, 1801-1814.                                                                                                                                                                                | 1.2 | 13        |
| 66 | Captains' response to a declining stock as anticipated in the surfclam (Spisula solidissima) fishery on the U.S. Mid-Atlantic coast by model evaluation. Ocean and Coastal Management, 2016, 134, 52-68.                                                                                                                                  | 2.0 | 12        |
| 67 | Oysters, Sustainability, Management Models, and the World of Reference Points. Journal of Shellfish<br>Research, 2018, 37, 833-849.                                                                                                                                                                                                       | 0.3 | 12        |
| 68 | Population dynamics of <i>Arctica islandica</i> at Georges Bank (USA): an analysis of sex-based demographics. Journal of the Marine Biological Association of the United Kingdom, 2021, 101, 1003-1018.                                                                                                                                   | 0.4 | 12        |
| 69 | Effects of Climate Variability on Interannual Variation in Parasites, Pathologies, and Physiological<br>Attributes of Bivalves from the U.S. East, Gulf, and West Coasts. Environmental Bioindicators, 2009, 4,<br>67-96.                                                                                                                 | 0.4 | 11        |
| 70 | The Middle Atlantic Bight Cold Pool is warming and shrinking: Indices from in situ autumn seafloor temperatures. Fisheries Oceanography, 2022, 31, 217-223.                                                                                                                                                                               | 0.9 | 11        |
| 71 | Taphonomic Signature and the Imprint of Taphonomic History: Discriminating Between Taphofacies of the Inner Continental Shelf and a Microtidal Inlet. The Paleontological Society Special Publications, 1990, 5, 370-390.                                                                                                                 | 0.0 | 10        |
| 72 | Field studies using the oyster Crassostrea virginica to determine mercury accumulation and depuration rates. Bulletin of Environmental Contamination and Toxicology, 1993, 51, 464-70.                                                                                                                                                    | 1.3 | 10        |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | The application of guild and tier structure and energy flow in paleoecologic analysis: An example<br>using parautochthonous death assemblages from a variable salinity bay. Historical Biology, 1995, 10,<br>281-327.                        | 0.7 | 10        |
| 74 | Application of trophic transfer efficiency and age structure in the trophic analysis of fossil assemblages. Lethaia, 2001, 34, 97-118.                                                                                                       | 0.6 | 10        |
| 75 | Temporal Structure and Trends of Parasites and Pathologies in U.S. Oysters and Mussels: 16 Years of<br>Mussel Watch. Journal of Shellfish Research, 2015, 34, 967-993.                                                                       | 0.3 | 10        |
| 76 | Assessment of the Relationship of Stock and Recruitment in the Atlantic Surfclam Spisula solidissima in the Northwestern Atlantic Ocean. Journal of Shellfish Research, 2018, 37, 965.                                                       | 0.3 | 10        |
| 77 | Vessel time allocation in the US Illex illecebrosus fishery. Fisheries Research, 2003, 61, 35-55.                                                                                                                                            | 0.9 | 9         |
| 78 | The intermingling of benthic macroinvertebrate communities during a period of shifting range: The<br>"East of Nantucket―Atlantic Surfclam Survey and the existence of transient multiple stable states.<br>Marine Ecology, 2019, 40, e12546. | 0.4 | 9         |
| 79 | Effect of the amino acid histidine on the uptake of cadmium from the digestive system of the blue<br>crab,Callinectes sapidus. Bulletin of Environmental Contamination and Toxicology, 1981, 27-27, 34-41.                                   | 1.3 | 8         |
| 80 | Attainability of Accurate Age Frequencies for Ocean Quahogs (Arctica islandica) Using Large Datasets:<br>Protocol, Reader Precision, and Error Assessment. Journal of Shellfish Research, 2021, 40, .                                        | 0.3 | 8         |
| 81 | The Atlantic surfclam fishery and offshore wind energy development: 1. Model development and verification. ICES Journal of Marine Science, 2022, 79, 1787-1800.                                                                              | 1.2 | 8         |
| 82 | The Regional Spatial Structure of Parasites and Pathologies in Oysters and Mussels in the United States: 16 Years of Mussel Watch. Journal of Shellfish Research, 2015, 34, 939-965.                                                         | 0.3 | 6         |
| 83 | Prospects for the Sustainable Management of Public Oyster Resources. Journal of Shellfish Research, 2019, 38, 337.                                                                                                                           | 0.3 | 6         |
| 84 | Growth and longevity in surfclams east of Nantucket: Range expansion in response to the post-2000 warming of the North Atlantic. Continental Shelf Research, 2020, 195, 104059.                                                              | 0.9 | 5         |
| 85 | Historical biogeographic range shifts and the influence of climate change on ocean quahogs<br>( <i>Arctica islandica</i> ) on the Mid-Atlantic Bight. Holocene, 2022, 32, 964-976.                                                           | 0.9 | 5         |
| 86 | The effect of abundance changes on a management strategy evaluation for the Atlantic surfclam<br>(Spisula solidissima) using a spatially explicit, vessel-based fisheries model. Ocean and Coastal<br>Management, 2019, 169, 68-85.          | 2.0 | 4         |
| 87 | Efficiency estimates from depletion experiments for sedentary invertebrates: evaluation of sources of uncertainty in experimental design. Fisheries Research, 2021, 234, 105806.                                                             | 0.9 | 3         |
| 88 | Predicting Oyster Harvests at Maximum Sustained Yield: Application of Cultch and Stock Benchmarks<br>to Depleted Public Oyster Reefs in the Northern Gulf of Mexico. Journal of Shellfish Research, 2022,<br>40, .                           | 0.3 | 2         |
| 89 | Preservation of Mollusca in Copano Bay, Texas. The long-term record. The Paleontological Society Special Publications, 1992, 6, 237-237.                                                                                                     | 0.0 | 1         |
| 90 | The conundrum of biont-free substrates on a high-energy continental shelf: Burial and scour on<br>Nantucket Shoals, Great South Channel. Estuarine, Coastal and Shelf Science, 2021, 249, 107089.                                            | 0.9 | 1         |

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Time averaging and temporal persistence in chemoautotrophic molluscan-dominated death<br>assemblages on the Louisiana continental slope. The Paleontological Society Special Publications,<br>1992, 6, 49-49.            | 0.0 | 0         |
| 92 | Response of petroleum seep mussels to changing environmental conditions: Parasite transmission,<br>infection intensification, and health. Deep-Sea Research Part I: Oceanographic Research Papers, 2020,<br>166, 103408. | 0.6 | 0         |