Walter W Wenzel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2139154/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta, 2001, 436, 309-323.	5.4	1,117
2	Arsenic transformations in the soil–rhizosphere–plant system: fundamentals and potential application to phytoremediation. Journal of Biotechnology, 2002, 99, 259-278.	3.8	650
3	Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–A review. Earth-Science Reviews, 2017, 171, 621-645.	9.1	588
4	The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biology and Biochemistry, 2013, 60, 182-194.	8.8	566
5	Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant and Soil, 2009, 321, 385-408.	3.7	512
6	Rhizosphere geometry and heterogeneity arising from rootâ€mediated physical and chemical processes. New Phytologist, 2005, 168, 293-303.	7.3	480
7	Bacterial Communities Associated with Flowering Plants of the Ni Hyperaccumulator Thlaspi goesingense. Applied and Environmental Microbiology, 2004, 70, 2667-2677.	3.1	477
8	Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environmental Pollution, 2007, 148, 155-165.	7.5	210
9	Rhizosphere Characteristics of the Arsenic HyperaccumulatorPteris vittataL. and Monitoring of Phytoremoval Efficiency. Environmental Science & Technology, 2003, 37, 5008-5014.	10.0	200
10	FLUORINE SPECIATION AND MOBILITY IN F-CONTAMINATED SOILS. Soil Science, 1992, 153, 357-364.	0.9	184
11	Phosphorus saturation and pH differentially regulate the efficiency of organic acid anion-mediated P solubilization mechanisms in soil. Plant and Soil, 2011, 341, 363-382.	3.7	178
12	Title is missing!. Plant and Soil, 2003, 249, 83-96.	3.7	164
13	Interactive effects of organic acids in the rhizosphere. Soil Biology and Biochemistry, 2009, 41, 449-457.	8.8	149
14	Phytoextraction of Cd and Zn from agricultural soils by Salix ssp. and intercropping of Salix caprea and Arabidopsis halleri. Plant and Soil, 2007, 298, 255-264.	3.7	125
15	Root exudation of phytosiderophores from soilâ€grown wheat. New Phytologist, 2014, 203, 1161-1174.	7.3	124
16	Localized Flux Maxima of Arsenic, Lead, and Iron around Root Apices in Flooded Lowland Rice. Environmental Science & Technology, 2014, 48, 8498-8506.	10.0	124
17	Novel rhizobox design to assess rhizosphere characteristics at high spatial resolution. Plant and Soil, 2001, 237, 37-45.	3.7	101
18	Changes of Ni biogeochemistry in the rhizosphere of the hyperaccumulator Thlaspi goesingense. Plant and Soil, 2005, 271, 205-218.	3.7	96

#	Article	IF	CITATIONS
19	Evaluation of a novel tool for sampling root exudates from soil-grown plants compared to conventional techniques. Environmental and Experimental Botany, 2013, 87, 235-247.	4.2	94
20	Immobilization of heavy metals in soils using inorganic amendments in a greenhouse study. Journal of Plant Nutrition and Soil Science, 2003, 166, 191-196.	1.9	92
21	Phytoextraction of heavy metal contaminated soils withThlaspi goesingense and Amaranthus hybridus: Rhizosphere manipulation using EDTA and ammonium sulfate. Journal of Plant Nutrition and Soil Science, 2001, 164, 615-621.	1.9	88
22	Arsenic in field-collected soil solutions and extracts of contaminated soils and its implication to soil standards. Journal of Plant Nutrition and Soil Science, 2002, 165, 221.	1.9	87
23	Estimating dissolved organic carbon in natural waters by UV absorbance (254 nm). Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1996, 159, 605-607.	0.4	82
24	Characterization of Ni-tolerant methylobacteria associated with the hyperaccumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp. nov Systematic and Applied Microbiology, 2006, 29, 634-644.	2.8	81
25	Cadmium and zinc accumulation in willow and poplar species grown on polluted soils. Journal of Plant Nutrition and Soil Science, 2007, 170, 265-272.	1.9	80
26	Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants. Science of the Total Environment, 2012, 416, 490-500.	8.0	78
27	Aided phytostabilization using Miscanthus sinensis×giganteus on heavy metal-contaminated soils. Science of the Total Environment, 2014, 479-480, 125-131.	8.0	75
28	High-resolution chemical imaging of labile phosphorus in the rhizosphere of Brassica napus L. cultivars. Environmental and Experimental Botany, 2012, 77, 219-226.	4.2	73
29	Developing phosphorus-efficient crop varieties—An interdisciplinary research framework. Field Crops Research, 2014, 162, 87-98.	5.1	68
30	Arsenic adsorption by soils and iron-oxide-coated sand: kinetics and reversibility. Journal of Plant Nutrition and Soil Science, 1999, 162, 451-456.	1.9	66
31	Interactions between accumulation of trace elements and macronutrients in Salix caprea after inoculation with rhizosphere microorganisms. Chemosphere, 2011, 84, 1256-1261.	8.2	66
32	O2 dynamics in the rhizosphere of young rice plants (Oryza sativa L.) as studied by planar optodes. Plant and Soil, 2015, 390, 279-292.	3.7	65
33	Gel for Simultaneous Chemical Imaging of Anionic and Cationic Solutes Using Diffusive Gradients in Thin Films. Analytical Chemistry, 2013, 85, 12028-12036.	6.5	61
34	Optimizing Carbon Sequestration in Croplands: A Synthesis. Agronomy, 2021, 11, 882.	3.0	61
35	In situ observation of localized, sub-mm scale changes of phosphorus biogeochemistry in the rhizosphere. Plant and Soil, 2018, 424, 573-589.	3.7	59
36	Chemical changes in the rhizosphere of metal hyperaccumulator and excluderThlaspi species. Journal of Plant Nutrition and Soil Science, 2003, 166, 579-584.	1.9	58

#	Article	IF	CITATIONS
37	Immobilization of heavy metals in soils by the application of bauxite residues: pot experiments under field conditions. Journal of Plant Nutrition and Soil Science, 2004, 167, 54-59.	1.9	57
38	Trace element concentrations in leachates and mustard plant tissue (Sinapis alba L.) after biochar application to temperate soils. Science of the Total Environment, 2014, 481, 498-508.	8.0	56
39	Sulfur-aided phytoextraction of Cd and Zn by Salix smithiana combined with in situ metal immobilization by gravel sludge and red mud. Environmental Pollution, 2012, 170, 222-231.	7.5	54
40	Mapping of nickel in root cross-sections of the hyperaccumulator plant Berkheya coddii using laser ablation ICP-MS. Environmental and Experimental Botany, 2010, 69, 24-31.	4.2	51
41	Localized Metal Solubilization in the Rhizosphere of <i>Salix smithiana</i> upon Sulfur Application. Environmental Science & Technology, 2015, 49, 4522-4529.	10.0	50
42	Grassmann-Plücker relations and matroids with coefficients. Advances in Mathematics, 1991, 86, 68-110.	1.1	49
43	Environmental risks of farmed and barren alkaline coal ash landfills in Tuzla, Bosnia and Herzegovina. Environmental Pollution, 2008, 153, 677-686.	7.5	48
44	Expression of zinc and cadmium responsive genes in leaves of willow (Salix caprea L.) genotypes with different accumulation characteristics. Environmental Pollution, 2013, 178, 121-127.	7.5	47
45	Bacterially Induced Weathering of Ultramafic Rock and Its Implications for Phytoextraction. Applied and Environmental Microbiology, 2013, 79, 5094-5103.	3.1	44
46	Phytoremediation: A Plant-Microbe-Based Remediation System. Agronomy, 0, , 457-508.	0.2	44
47	First observation of diffusionâ€limited plant root phosphorus uptake from nutrient solution. Plant, Cell and Environment, 2012, 35, 1558-1566.	5.7	41
48	Plant growth and root morphology of Phaseolus vulgaris L. grown in a split-root system is affected by heterogeneity of crude oil pollution and mycorrhizal colonization. Plant and Soil, 2010, 332, 339-355.	3.7	39
49	Role of Plant Genotype and Soil Conditions in Symbiotic Plant-Microbe Interactions for Adaptation of Plants to Cadmium-Polluted Soils. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	38
50	Disposal of Coal Combustion Residues in Terrestrial Systems: Contamination and Risk Management. Journal of Environmental Quality, 2010, 39, 761-775.	2.0	37
51	Predictability of the Zn and Cd phytoextraction efficiency of a Salix smithiana clone by DGT and conventional bioavailability assays. Plant and Soil, 2013, 369, 531-541.	3.7	37
52	Phytosiderophore-induced mobilization and uptake of Cd, Cu, Fe, Ni, Pb and Zn by wheat plants grown on metal-enriched soils. Environmental and Experimental Botany, 2017, 138, 67-76.	4.2	37
53	Uncertainty Evaluation of the Diffusive Gradients in Thin Films Technique. Environmental Science & amp; Technology, 2015, 49, 1594-1602.	10.0	36
54	Integrating chemical imaging of cationic trace metal solutes and pH into a single hydrogel layer. Analytica Chimica Acta, 2017, 950, 88-97.	5.4	35

#	Article	IF	CITATIONS
55	Ectomycorrhizal impact on Zn accumulation of Populus tremula L. grown in metalliferous soil with increasing levels of Zn concentration. Plant and Soil, 2012, 355, 283-297.	3.7	33
56	Waste or substrate for metal hyperaccumulating plants — The potential of phytomining on waste incineration bottom ash. Science of the Total Environment, 2017, 575, 910-918.	8.0	33
57	Differentiation of metallicolous and nonâ€metallicolous <i>Salix caprea</i> populations based on phenotypic characteristics and nuclear microsatellite (SSR) markers. Plant, Cell and Environment, 2010, 33, 1641-1655.	5.7	32
58	NICKEL AND COPPER SORPTION IN ACID FOREST SOILS. Soil Science, 2000, 165, 463-472.	0.9	32
59	A novel flow-injection method for simultaneous measurement of platinum (Pt), palladium (Pd) and rhodium (Rh) in aqueous soil extracts of contaminated soil by ICP-OES. Journal of Analytical Atomic Spectrometry, 2013, 28, 354.	3.0	31
60	Environmental impact assessment of wood ash utilization in forest road construction and maintenance $\hat{a} \in \mathbb{C}^{n}$ A field study. Science of the Total Environment, 2016, 544, 711-721.	8.0	31
61	Co-occurring increased phosphatase activity and labile P depletion in the rhizosphere of Lupinus angustifolius assessed with a novel, combined 2D-imaging approach. Soil Biology and Biochemistry, 2021, 153, 107963.	8.8	31
62	Co-localised phosphorus mobilization processes in the rhizosphere of field-grown maize jointly contribute to plant nutrition. Soil Biology and Biochemistry, 2022, 165, 108497.	8.8	27
63	In-situ sampling of soil pore water: evaluation of linear-type microdialysis probes and suction cups at varied moisture contents. Environmental Chemistry, 2010, 7, 123.	1.5	26
64	Plant and fertiliser effects on rhizodegradation of crude oil in two soils with different nutrient status. Plant and Soil, 2007, 300, 117-126.	3.7	25
65	Zinc accumulation potential and toxicity threshold determined for a metal-accumulating Populus canescens clone in a dose–response study. Environmental Pollution, 2009, 157, 2871-2877.	7.5	25
66	Determination of Pt, Pd and Rh in Brassica Napus using solid sampling electrothermal vaporization inductively coupled plasma optical emission spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 89, 60-65.	2.9	25
67	Assessment of trace element phytoavailability in compost amended soils using different methodologies. Journal of Soils and Sediments, 2017, 17, 1251-1261.	3.0	25
68	Response of tungsten (W) solubility and chemical fractionation to changes in soil pH and soil aging. Science of the Total Environment, 2020, 731, 139224.	8.0	25
69	Arsenic redox transformations and cycling in the rhizosphere of Pteris vittata and Pteris quadriaurita. Environmental and Experimental Botany, 2020, 177, 104122.	4.2	25
70	Novel micro-suction-cup design for sampling soil solution at defined distances from roots. Journal of Plant Nutrition and Soil Science, 2005, 168, 386-391.	1.9	24
71	Trace element biogeochemistry in the soil-water-plant system of a temperate agricultural soil amended with different biochars. Environmental Science and Pollution Research, 2015, 22, 4513-4526.	5.3	24
72	Microtome sectioning causes artifacts in rhizobox experiments. Plant and Soil, 2003, 256, 455-462.	3.7	22

#	Article	lF	CITATIONS
73	Phosphorus uptake by Zea mays L. is quantitatively predicted by infinite sink extraction of soil P. Plant and Soil, 2015, 386, 371-383.	3.7	22
74	Antecedent soil moisture and rain intensity control pathways and quality of organic carbon exports from arable land. Catena, 2021, 202, 105297.	5.0	22
75	Root morphology ofThlaspi goesingenseHálácsy grown on a serpentine soil. Journal of Plant Nutrition and Soil Science, 2005, 168, 138-144.	1.9	18
76	Reprint of "Developing phosphorus-efficient crop varieties—An interdisciplinary research framework― Field Crops Research, 2014, 165, 49-60.	5.1	17
77	High Spatial and Fast Changes of Iron Redox State and Phosphorus Solubility in a Seasonally Flooded Temperate Wetland Soil. Wetlands, 2015, 35, 237-246.	1.5	16
78	Silicon Availability from Chemically Diverse Fertilizers and Secondary Raw Materials. Environmental Science & Technology, 2019, 53, 5359-5368.	10.0	16
79	Short-Term Effects of Fertilization on Dissolved Organic Matter in Soil Leachate. Water (Switzerland), 2020, 12, 1617.	2.7	15
80	Root and Rhizosphere Processes in Metal Hyperaccumulation and Phytoremediation Technology. , 2004, , 313-344.		14
81	Media formulation influences in vitro ectomycorrhizal synthesis on the European aspen Populus tremula L Mycorrhiza, 2008, 18, 297-307.	2.8	14
82	Fungicide application increased copper-bioavailability and impaired nitrogen fixation through reduced root nodule formation on alfalfa. Ecotoxicology, 2019, 28, 599-611.	2.4	14
83	Dependency of Phytoavailability of Metals on Indigenous and Induced Rhizosphere Processes. , 2000, , .		14
84	Soil and land use factors control organic carbon status and accumulation in agricultural soils of Lower Austria. Geoderma, 2022, 409, 115595.	5.1	13
85	Simultaneous multi-element analysis of trace elements in soil samples by means of high-resolution inductively coupled plasma sector field mass spectrometry (SF-ICP-MS). Fresenius' Journal of Analytical Chemistry, 2000, 368, 256-262.	1.5	12
86	Numerical Evaluation of Lateral Diffusion Inside Diffusive Gradients in Thin Films Samplers. Environmental Science & Technology, 2015, 49, 6109-6116.	10.0	12
87	Pore characteristics of hydrochars and their role as a vector for soil bacteria: A critical review of engineering options. Critical Reviews in Environmental Science and Technology, 2022, 52, 4147-4171.	12.8	12
88	Potassium fixation in northern Iranian paddy soils. Geoderma, 2020, 375, 114475.	5.1	11
89	Projective equivalence of matroids with coefficients. Journal of Combinatorial Theory - Series A, 1991, 57, 15-45.	0.8	10
90	The suitability of pde-solvers in rhizosphere modeling, exemplified by three mechanistic rhizosphere models. Journal of Plant Nutrition and Soil Science, 2002, 165, 713-718.	1.9	10

#	Article	IF	CITATIONS
91	Metal accumulation and rhizosphere characteristics of Noccaea rotundifolia ssp. cepaeifolia. Environmental Pollution, 2020, 266, 115088.	7.5	10
92	Functional Recycling of Biobased, Borate-Stabilized Insulation Materials As B Fertilizer. Environmental Science & Technology, 2019, 53, 14620-14629.	10.0	9
93	Algebraic, tropical, and fuzzy geometry. Beitrage Zur Algebra Und Geometrie, 2011, 52, 431-461.	0.5	8
94	Effects of silicon amendments on grapevine, soil and wine. Plant, Soil and Environment, 2020, 66, 403-414.	2.2	8
95	Symmetrization of Closure Operators and Visibility. Annals of Combinatorics, 2005, 9, 431-450.	0.6	7
96	Growth and Cd accumulation of two halophytes and a non-halophyte grown in a non-saline and a saline soil with different Cd levels. Chemistry and Ecology, 2014, 30, 743-754.	1.6	7
97	Combining spectroscopic and flux measurement techniques to determine solid-phase speciation and solubility of phosphorus in agricultural soils. Geoderma, 2022, 410, 115677.	5.1	7
98	Effects of different freezing methods on estimates of soil microbial biomass N by fumigation-extraction. Journal of Plant Nutrition and Soil Science, 2003, 166, 326-327.	1.9	4
99	Diffusive gradients in thin films measurement of sulfur stable isotope variations in labile soil sulfate. Analytical and Bioanalytical Chemistry, 2016, 408, 8333-8341.	3.7	4
100	A quick and simple spectrophotometric method to determine total carbon concentrations in root exudate samples of grass species. Plant and Soil, 2022, 478, 273-281.	3.7	4
101	Combined effects of carbonaceous-immobilizing agents and subsequent sulphur application on maize phytoextraction efficiency in highly contaminated soil. Environmental Science and Pollution Research, 2019, 26, 20866-20878.	5.3	3
102	Tandem Probe Analysis Mode for Synchrotron XFM: Doubling Throughput Capacity. Analytical Chemistry, 2022, 94, 4584-4593.	6.5	3
103	In situ spatiotemporal solute imaging of metal corrosion on the example of magnesium. Analytica Chimica Acta, 2022, 1212, 339910.	5.4	3
104	Matroidizing set systems: a new approach to matroid theory. Applied Mathematics Letters, 1990, 3, 29-32.	2.7	2
105	Seasonal and spatial variation of extractable trace metal fractions in topsoils under mixed forest. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1996, 159, 333-336.	0.4	2
106	Comparison of methods for measuring metal desorption from soils for parameterizing rhizosphere models. European Journal of Soil Science, 2006, 57, 38-46.	3.9	2
107	An axiomatic system for affine spaces in terms of points, lines, and planes. Journal of Geometry, 2016, 107, 207-216.	0.4	2
108	Diffusive gradients in thin films predicts crop response better than calcium-acetate-lactate extraction. Nutrient Cycling in Agroecosystems, 2021, 121, 227-240.	2.2	2

#	Article	IF	CITATIONS
109	A Lipschitz condition for the width function of convex bodies in arbitrary Minkowski spaces. Applied Mathematics Letters, 2009, 22, 142-145.	2.7	1
110	Hazardous elements speciation in sandy, alkaline coal mine overburden by using different sequential extraction procedures. Chemical Speciation and Bioavailability, 2014, 26, 85-91.	2.0	1
111	Wheat yield prediction by zero sink and equilibrium-type soil phosphorus tests. Pedosphere, 2022, 32, 543-554.	4.0	1
112	Arithmetic and Polynomials over Fuzzy Rings. Communications in Algebra, 2015, 43, 1207-1231.	0.6	0