Junaid Qadir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2139095/publications.pdf

Version: 2024-02-01

100601 107981 6,172 180 38 68 citations h-index g-index papers 211 211 211 6309 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Survey of Deep Representation Learning for Speech Emotion Recognition. IEEE Transactions on Affective Computing, 2023, 14, 1634-1654.	5.7	26
2	Challenges and Countermeasures for Adversarial Attacks on Deep Reinforcement Learning. IEEE Transactions on Artificial Intelligence, 2022, 3, 90-109.	3.4	37
3	A deep dive into COVID-19-related messages on WhatsApp in Pakistan. Social Network Analysis and Mining, 2022, 12, 5.	1.9	9
4	Developing future human-centered smart cities: Critical analysis of smart city security, Data management, and Ethical challenges. Computer Science Review, 2022, 43, 100452.	10.2	62
5	Fake visual content detection using two-stream convolutional neural networks. Neural Computing and Applications, 2022, 34, 7991-8004.	3.2	6
6	Network as a service: A new vista of opportunities. IEEE Potentials, 2022, 41, 35-43.	0.2	0
7	Security and privacy of internet of medical things: A contemporary review in the age of surveillance, botnets, and adversarial ML. Journal of Network and Computer Applications, 2022, 201, 103332.	5.8	45
8	Toward accountable human-centered AI: rationale and promising directions. Journal of Information Communication and Ethics in Society, 2022, 20, 329-342.	1.0	9
9	Global User-Level Perception of COVID-19 Contact Tracing Applications: Data-Driven Approach Using Natural Language Processing. JMIR Formative Research, 2022, 6, e36238.	0.7	3
10	Enhancing Cyber Security of LoRaWAN Gateways under Adversarial Attacks. Sensors, 2022, 22, 3498.	2.1	9
11	Smart Cities from the Perspective of Systems. Systems, 2022, 10, 77.	1.2	12
12	Islamic virtue-based ethics for artificial intelligence. Discover Artificial Intelligence, 2022, 2, .	2.1	6
13	Tamp-X: Attacking explainable natural language classifiers through tampered activations. Computers and Security, 2022, 120, 102791.	4.0	8
14	Robust Enhancement of Intrusion Detection Systems Using Deep Reinforcement Learning and Stochastic Game. IEEE Transactions on Vehicular Technology, 2022, 71, 11089-11102.	3.9	16
15	Making federated learning robust to adversarial attacks by learning data and model association. Computers and Security, 2022, 121, 102827.	4.0	12
16	Single-shot retinal image enhancement using untrained and pretrained neural networks priors integrated with analytical image priors. Computers in Biology and Medicine, 2022, 148, 105879.	3.9	5
17	Secure and Robust Machine Learning for Healthcare: A Survey. IEEE Reviews in Biomedical Engineering, 2021, 14, 156-180.	13.1	230
18	Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A Review. IEEE Reviews in Biomedical Engineering, 2021, 14, 139-155.	13.1	148

#	Article	IF	CITATIONS
19	Speech Technology for Healthcare: Opportunities, Challenges, and State of the Art. IEEE Reviews in Biomedical Engineering, 2021, 14, 342-356.	13.1	63
20	EthReview: An Ethereum-based Product Review System for Mitigating Rating Frauds. Computers and Security, 2021, 100, 102094.	4.0	13
21	Trust-Based Cloud Machine Learning Model Selection for Industrial IoT and Smart City Services. IEEE Internet of Things Journal, 2021, 8, 2943-2958.	5.5	27
22	Employing Industrial Quality Management Systems for Quality Assurance in Outcome-Based Engineering Education: A Review. Education Sciences, 2021, 11, 45.	1.4	6
23	Examining Machine Learning for 5G and Beyond Through an Adversarial Lens. IEEE Internet Computing, 2021, 25, 26-34.	3.2	18
24	Budgeted Online Selection of Candidate IoT Clients to Participate in Federated Learning. IEEE Internet of Things Journal, 2021, 8, 5938-5952.	5.5	42
25	Work in Progress: Pedagogy of Engineering Ethics: A Bibliometric and Curricular Analysis. , 2021, , .		3
26	WiMesh: leveraging mesh networking for disaster communication in resource-constrained settings. Wireless Networks, 2021, 27, 2785-2812.	2.0	4
27	Using the Lens of Systems Thinking To Model Education During and Beyond COVID-19. , 2021, , .		1
28	Energy-Efficient MAC for Cellular IoT: State-of-the-Art, Challenges, and Standardization. IEEE Transactions on Green Communications and Networking, 2021, 5, 587-599.	3.5	11
29	Privacy Enhanced Speech Emotion Communication using Deep Learning Aided Edge Computing. , 2021, , .		3
30	Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques. Renewable and Sustainable Energy Reviews, 2021, 144, 110969.	8.2	98
31	COVID-19 digital contact tracing applications and techniques: A review post initial deployments. Transportation Engineering, 2021, 5, 100072.	2.3	81
32	Sentence-Level Classification Using Parallel Fuzzy Deep Learning Classifier. IEEE Access, 2021, 9, 17943-17985.	2.6	21
33	All Your Fake Detector are Belong to Us: Evaluating Adversarial Robustness of Fake-News Detectors Under Black-Box Settings. IEEE Access, 2021, 9, 81678-81692.	2.6	18
34	A MapReduce Opinion Mining for COVID-19-Related Tweets Classification Using Enhanced ID3 Decision Tree Classifier. IEEE Access, 2021, 9, 58706-58739.	2.6	32
35	Online teaching during COVID-19: the triple imperatives. International Journal of Pluralism and Economics Education, 2021, 12, 28.	0.0	3
36	Characterising the IETF through the lens of RFC deployment. , 2021, , .		5

#	Article	IF	CITATIONS
37	A Generative Model to Synthesize EEG Data for Epileptic Seizure Prediction. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 2322-2332.	2.7	27
38	Big data analytics enhanced healthcare systems: a review. Journal of Supercomputing, 2020, 76, 1754-1799.	2.4	69
39	The Adversarial Machine Learning Conundrum: Can the Insecurity of ML Become the Achilles' Heel of Cognitive Networks?. IEEE Network, 2020, 34, 196-203.	4.9	21
40	Utilizing Loss Tolerance and Bandwidth Expansion for Energy Efficient User Association in HetNets. , 2020, , .		2
41	Towards Mobile Edge Computing: Taxonomy, Challenges, Applications and Future Realms. IEEE Access, 2020, 8, 189129-189162.	2.6	26
42	Maximizing secrecy rate of an orthogonal frequency division multiplexingâ€based multihop underwater acoustic sensor network. Transactions on Emerging Telecommunications Technologies, 2020, 31, e4106.	2.6	4
43	Leveraging Data Science to Combat COVID-19: A Comprehensive Review. IEEE Transactions on Artificial Intelligence, 2020, 1, 85-103.	3.4	134
44	A Student Primer on How to Thrive in Engineering Education during and beyond COVID-19. Education Sciences, 2020, 10, 236.	1.4	36
45	Active Learning Based Federated Learning for Waste and Natural Disaster Image Classification. IEEE Access, 2020, 8, 208518-208531.	2.6	40
46	Securing Machine Learning in the Cloud: A Systematic Review of Cloud Machine Learning Security. Frontiers in Big Data, 2020, 3, 587139.	1.8	28
47	Opportunistic Selection of Vehicular Data Brokers as Relay Nodes to the Cloud. , 2020, , .		2
48	Towards Smart Port Infrastructures: Enhancing Port Activities Using Information and Communications Technology. IEEE Access, 2020, 8, 83387-83404.	2.6	72
49	Retrospective Motion Correction in Multishot MRI using Generative Adversarial Network. Scientific Reports, 2020, 10, 4786.	1.6	45
50	Computational Intelligence for Internet of Things in the Big Data Era (Part II) [Guest Editorial]. IEEE Computational Intelligence Magazine, 2020, 15, 22-23.	3.4	4
51	Energy-Aware and Reliability-Based Localization-Free Cooperative Acoustic Wireless Sensor Networks. IEEE Access, 2020, 8, 121366-121384.	2.6	20
52	Securing Connected & Description of the Way Forward. IEEE Communications Surveys and Tutorials, 2020, 22, 998-1026.	24.8	140
53	A Stable and Reliable Short-Path Routing Scheme for Efficient Acoustic Wireless Sensor Networks (AWSNs). IEEE Access, 2020, 8, 1458-1474.	2.6	6
54	Assessment and Feedback Under Disruptive Circumstances in Trans-National Education., 2020,,.		0

#	Article	IF	Citations
55	Particle Swarm Optimized Federated Learning For Industrial IoT and Smart City Services., 2020,,.		30
56	A First Look at COVID-19 Messages on WhatsApp in Pakistan. , 2020, , .		10
57	A Deep Reinforcement Learning Based Intrusion Detection System (DRL-IDS) for Securing Wireless Sensor Networks and Internet of Things. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2020, , 73-87.	0.2	12
58	Single-Shot Retinal Image Enhancement Using Deep Image Priors. Lecture Notes in Computer Science, 2020, , 636-646.	1.0	3
59	Engineering Education, Moving into 2020s : Essential Competencies for Effective 21st Century Electrical & Ele		16
60	LoRaDRL: Deep Reinforcement Learning Based Adaptive PHY Layer Transmission Parameters Selection for LoRaWAN. , 2020, , .		11
61	Black-box Adversarial Machine Learning Attack on Network Traffic Classification. , 2019, , .		19
62	Generative Adversarial Networks For Launching and Thwarting Adversarial Attacks on Network Intrusion Detection Systems. , 2019, , .		81
63	Maritime Networking: Bringing Internet to the Sea. IEEE Access, 2019, 7, 48236-48255.	2.6	31
64	Using Blockchain to Rein in the New Post-Truth World and Check the Spread of Fake News. IT Professional, 2019, 21, 16-24.	1.4	63
65	Leveraging Machine Learning and Big Data for Smart Buildings: A Comprehensive Survey. IEEE Access, 2019, 7, 90316-90356.	2.6	125
66	Deep Learning-Based Rumor Detection on Microblogging Platforms: A Systematic Review. IEEE Access, 2019, 7, 152788-152812.	2.6	46
67	FAdeML: Understanding the Impact of Pre-Processing Noise Filtering on Adversarial Machine Learning. , 2019, , .		21
68	Soft Computing Techniques for Dependable Cyber-Physical Systems. IEEE Access, 2019, 7, 72030-72049.	2.6	18
69	Unsupervised Machine Learning for Networking: Techniques, Applications and Research Challenges. IEEE Access, 2019, 7, 65579-65615.	2.6	206
70	Using phase shift fingerprints and inertial measurements in support of precise localization in urban areas. Personal and Ubiquitous Computing, 2019, 23, 861-872.	1.9	4
71	Early Student Grade Prediction: An Empirical Study. , 2019, , .		11
72	A bibliometric analysis of publications in computer networking research. Scientometrics, 2019, 119, 1121-1155.	1.6	41

#	Article	IF	CITATIONS
73	Socially-aware congestion control in ad-hoc networks: Current status and the way forward. Future Generation Computer Systems, 2019, 97, 634-660.	4.9	15
74	Energy Balanced Localization-Free Cooperative Noise-Aware Routing Protocols for Underwater Wireless Sensor Networks. Energies, 2019, 12, 4263.	1.6	14
75	CSAR: Cooperative Stability Aware Routing Scheme for Acoustic Wireless Sensor Networks. , 2019, , .		1
76	Adversarial ML Attack on Self Organizing Cellular Networks. , 2019, , .		2
77	Adversarial Machine Learning Attack on Modulation Classification. , 2019, , .		9
78	Computational Intelligence for Internet of Things in the Big Data Era (Part I) [Guest Editorial]. IEEE Computational Intelligence Magazine, 2019, 14, 11-88.	3.4	1
79	Opportunistic Data Ferrying in Areas with Limited Information and Communications Infrastructure. , 2019, , .		1
80	Caveat Emptor: The Risks of Using Big Data for Human Development. IEEE Technology and Society Magazine, 2019, 38, 82-90.	0.6	20
81	Unsupervised Adversarial Domain Adaptation for Cross-Lingual Speech Emotion Recognition., 2019,,.		29
82	Sustainable development viewed from the lens of Islam. International Journal of Pluralism and Economics Education, 2019, 10, 46.	0.0	6
83	A Reinforcement Learning-Based Trust Model for Cluster Size Adjustment Scheme in Distributed Cognitive Radio Networks. IEEE Transactions on Cognitive Communications and Networking, 2019, 5, 28-43.	4.9	21
84	Urdu language based information dissemination system for low-literate farmers. , 2019, , .		3
85	Towards enhancement of communication systems, networks and applications for smart environment. Journal of Ambient Intelligence and Humanized Computing, 2019, 10, 1271-1273.	3.3	8
86	Five decades of the ACM special interest group on data communications (SIGCOMM). Computer Communication Review, 2019, 49, 29-37.	1.5	4
87	A Survey on Reinforcement Learning Models and Algorithms for Traffic Signal Control. ACM Computing Surveys, 2018, 50, 1-38.	16.1	129
88	Community detection in networks: A multidisciplinary review. Journal of Network and Computer Applications, 2018, 108, 87-111.	5 . 8	296
89	Computational Intelligence Techniques for Mobile Network Optimization [Guest Editorial]. IEEE Computational Intelligence Magazine, 2018, 13, 28-28.	3.4	4
90	Shedding Light on the Dark Corners of the Internet: A Survey of Tor Research. Journal of Network and Computer Applications, 2018, 114, 1-28.	5.8	30

#	Article	IF	Citations
91	RL-Budget: A Learning-Based Cluster Size Adjustment Scheme for Cognitive Radio Networks. IEEE Access, 2018, 6, 1055-1072.	2.6	15
92	Learning 101: The Untaught Basics. IEEE Potentials, 2018, 37, 33-38.	0.2	6
93	Low-cost sustainable wireless Internet service for rural areas. Wireless Networks, 2018, 24, 1439-1450.	2.0	13
94	Exploring Media Bias and Toxicity in South Asian Political Discourse. , 2018, , .		6
95	Universal Access in 5G Networks: Potential Challenges and Opportunities for Urban and Rural Environments., 2018,, 299-326.		3
96	Cross Lingual Speech Emotion Recognition: Urdu vs. Western Languages., 2018,,.		52
97	User Transmit Power Minimization through Uplink Resource Allocation and User Association in HetNets. , $2018, \ldots$		7
98	Adversarial Attacks on Cognitive Self-Organizing Networks: The Challenge and the Way Forward. , 2018, , .		13
99	Teaching Ethics, (Islamic) Values and Technology: Musings on Course Design and Experience., 2018,,.		4
100	Quran Reciter Identification: A Deep Learning Approach. , 2018, , .		7
101	Wireless Technologies for Emergency Response: A Comprehensive Review and Some Guidelines. IEEE Access, 2018, 6, 71814-71838.	2.6	27
102	SDN Flow Entry Management Using Reinforcement Learning. ACM Transactions on Autonomous and Adaptive Systems, 2018, 13, 1-23.	0.4	35
103	Phonocardiographic Sensing Using Deep Learning for Abnormal Heartbeat Detection. IEEE Sensors Journal, 2018, 18, 9393-9400.	2.4	101
104	On Analyzing Self-Driving Networks. , 2018, , .		2
105	Cognition-Inspired 5G Cellular Networks: A Review and the Road Ahead. IEEE Access, 2018, 6, 35072-35090.	2.6	42
106	Memory-Based User-Centric Backhaul-Aware User Cell Association Scheme. IEEE Access, 2018, 6, 39595-39605.	2.6	12
107	Impersonation Detection in Line-of-Sight Underwater Acoustic Sensor Networks. IEEE Access, 2018, 6, 44459-44472.	2.6	18
108	A Sustainable Connectivity Model of the Internet Access Technologies in Rural and Low-Income Areas. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2018, , 93-102.	0.2	4

#	Article	IF	CITATIONS
109	Machine learning based optimized live virtual machine migration over WAN links. Telecommunication Systems, 2017, 64, 245-257.	1.6	19
110	A measurement study of open source SDN layers in OpenStack under network perturbation. Computer Communications, 2017, 102, 139-149.	3.1	16
111	On Using Micro-Clouds to Deliver the Fog. IEEE Internet Computing, 2017, 21, 8-15.	3.2	70
112	Feasibility, architecture and cost considerations of using TVWS for rural Internet access in 5G., 2017,		44
113	Mobile Health in the Developing World: Review of Literature and Lessons From a Case Study. IEEE Access, 2017, 5, 11540-11556.	2.6	126
114	Fuzzy Q-learning-based user-centric backhaul-aware user cell association scheme. , 2017, , .		9
115	Reliability modeling and analysis of communication networks. Journal of Network and Computer Applications, 2017, 78, 191-215.	5.8	80
116	Weather Forecast Information Dissemination Design For Low-Literate Farmers., 2017,,.		6
117	IEEE Access Special Section Editorial: Health Informatics for the Developing World. IEEE Access, 2017, 5, 27818-27823.	2.6	8
118	Using deep autoencoders for facial expression recognition. , 2017, , .		25
119	Connecting the unconnected 10% of New Zealanders by 2025: Is a MahiTahi approach possible?. , 2017, , .		7
120	How 5G Wireless (and Concomitant Technologies) Will Revolutionize Healthcare?. Future Internet, 2017, 9, 93.	2.4	122
121	Approximate Networking for Universal Internet Access. Future Internet, 2017, 9, 94.	2.4	2
122	Persuasive Technology for Human Development: Review and Case Study. EAI Endorsed Transactions on Serious Games, 2017, 4, 153401.	0.3	6
123	Crisis analytics: big data-driven crisis response. Journal of International Humanitarian Action, 2016, 1, .	0.7	90
124	Admission Criteria in Pakistani Universities: A Case Study. , 2016, , .		3
125	Sentiment analysis of controversial topics on Pakistan's Twitter user-base., 2016,,.		5
126	MP-ALM: Exploring Reliable Multipath Multicast Streaming with Multipath TCP. , 2016, , .		4

#	Article	IF	Citations
127	"Resource Pooling―for Wireless Networks. Computer Communication Review, 2016, 46, 30-35.	1.5	8
128	Neural networks in wireless networks: Techniques, applications and guidelines. Journal of Network and Computer Applications, 2016, 68, 1-27.	5.8	54
129	Wireless technologies for development [Guest Editorial]. , 2016, 54, 18-19.		2
130	The past, present, and future of transport-layer multipath. Journal of Network and Computer Applications, 2016, 75, 236-258.	5.8	33
131	Route Selection for Multi-Hop Cognitive Radio Networks Using Reinforcement Learning: An Experimental Study. IEEE Access, 2016, 4, 6304-6324.	2.6	38
132	Comparing Oversampling Techniques to Handle the Class Imbalance Problem: A Customer Churn Prediction Case Study. IEEE Access, 2016, 4, 7940-7957.	2.6	210
133	Big data for development: applications and techniques. Big Data Analytics, 2016, 1, .	2.2	94
134	Big Data in the construction industry: A review of present status, opportunities, and future trends. Advanced Engineering Informatics, 2016, 30, 500-521.	4.0	428
135	Taming limits with approximate networking. , 2016, , .		5
136	Artificial intelligence based cognitive routing for cognitive radio networks. Artificial Intelligence Review, 2016, 45, 25-96.	9.7	49
137	Genetic algorithms in wireless networking: techniques, applications, and issues. Soft Computing, 2016, 20, 2467-2501.	2.1	73
138	Big data architecture for construction waste analytics (CWA): A conceptual framework. Journal of Building Engineering, 2016, 6, 144-156.	1.6	130
139	Will 5G See its Blind Side? Evolving 5G for Universal Internet Access. , 2016, , .		13
140	QoS in IEEE 802.11-based wireless networks: A contemporary review. Journal of Network and Computer Applications, 2015, 55, 24-46.	5.8	95
141	IEEE ACCESS SPECIAL SECTION EDITORIAL: ARTIFICIAL INTELLIGENCE ENABLED NETWORKING. IEEE Access, 2015, 3, 3079-3082.	2.6	15
142	Analysis of critical features and evaluation of BIM software: towards a plug-in for construction waste minimization using big data. International Journal of Sustainable Building Technology and Urban Development, 2015, 6, 211-228.	1.0	54
143	High-throughput transmission-quality-aware broadcast routing in cognitive radio networks. Wireless Networks, 2015, 21, 1193-1210.	2.0	9
144	Applying Formal Methods to Networking: Theory, Techniques, and Applications. IEEE Communications Surveys and Tutorials, 2015, 17, 256-291.	24.8	40

#	Article	IF	CITATIONS
145	What Every Student Should Know: Seven Learning Impediments and Their Remedies. IEEE Potentials, 2015, 34, 30-35.	0.2	10
146	Application of reinforcement learning for security enhancement in cognitive radio networks. Applied Soft Computing Journal, 2015, 37, 809-829.	4.1	39
147	Learning automata based multipath multicasting in cognitive radio networks. Journal of Communications and Networks, 2015, 17, 406-418.	1.8	9
148	Exploiting the Power of Multiplicity: A Holistic Survey of Network-Layer Multipath. IEEE Communications Surveys and Tutorials, 2015, 17, 2176-2213.	24.8	72
149	Building programmable wireless networks: an architectural survey. Eurasip Journal on Wireless Communications and Networking, 2014, 2014, .	1.5	26
150	SDNs, Clouds, and Big Data: New Opportunities. , 2014, , .		14
151	Multicasting in cognitive radio networks: Algorithms, techniques and protocols. Journal of Network and Computer Applications, 2014, 45, 44-61.	5.8	23
152	Performance analysis of 802.11 DCF with limited channels. , 2014, , .		0
153	Channel assignment in non-cooperative coexisting co-located independent cognitive radio networks. , 2013, , .		2
154	Mitigating the Effect of Malicious Users in Cognitive Networks. , 2013, , .		1
155	A game-theoretic spectrum allocation framework for mixed unicast and broadcast traffic profile in cognitive radio networks. , $2013, \ldots$		6
156	Quantifying the Multiple Cognitive Radio Interfaces Advantage. , 2013, , .		8
157	Unified channel assignment for unicast and broadcast traffic in Cognitive Radio Networks. , 2012, , .		10
158	Spectrum-aware dynamic channel assignment in cognitive radio networks. , 2012, , .		19
159	A Genetic Algorithm Assisted Resource Management Scheme for Reliable Multimedia Delivery over Cognitive Networks. Lecture Notes in Computer Science, 2012, , 352-367.	1.0	2
160	Recovery and bandwidth sharing techniques in MPLS networks. , 2011, , .		2
161	Backup channel and cooperative channel switching on-demand routing protocol for multi-hop cognitive radio ad hoc networks (BCCCS). , 2010, , .		22
162	Routing protocols in Delay Tolerant Networks - a survey. , 2010, , .		39

#	Article	IF	CITATIONS
163	Broadcasting in cognitive wireless mesh networks with dynamic channel conditions. , 2010, , .		1
164	Minimum Latency Broadcasting in Multiradio, Multichannel, Multirate Wireless Meshes. IEEE Transactions on Mobile Computing, 2009, 8, 1510-1523.	3.9	35
165	Channel assignment in cognitive radio networks. , 2009, , .		0
166	Priority-based allocation of network resources in multi-class MPLS networks. , 2009, , .		0
167	Prediction-based channel zapping latency reduction techniques for IPTV systems & amp; #x2014; A survey., 2009,,.		9
168	Localized minimum-latency broadcasting in multi-radio multi-rate wireless mesh networks. , 2008, , .		15
169	Advances and Challenges with Data Broadcasting in Wireless Mesh Networks. , 2007, 45, 78-85.		6
170	Localized Minimum-Latency Broadcasting in Multi-rate Wireless Mesh Networks. , 2007, , .		6
171	Exploiting Rate Diversity for Multicasting in Multi-Radio Wireless Mesh Networks. Local Computer Networks (LCN), Proceedings of the IEEE Conference on, 2006, , .	0.0	8
172	Low-Latency Broadcast in Multirate Wireless Mesh Networks. IEEE Journal on Selected Areas in Communications, 2006, 24, 2081-2091.	9.7	81
173	Minimum Latency Broadcasting in Multi-Radio Multi-Channel Multi-Rate Wireless Meshes. , 2006, , .		32
174	The Islamic Worldview and Development Ideals. SSRN Electronic Journal, 0, , .	0.4	1
175	Variational Autoencoders for Learning Latent Representations of Speech Emotion: A Preliminary Study. , 0, , .		37
176	Transfer Learning for Improving Speech Emotion Classification Accuracy., 0,,.		77
177	Mobile Technologies for Managing Non-Communicable Diseases in Developing Countries. Advances in Wireless Technologies and Telecommunication Book Series, 0, , 261-287.	0.3	11
178	What Every Student Should Know? 7 Cardinal Mistakes & Their Solutions. SSRN Electronic Journal, 0, ,	0.4	1
179	Learning 101: The Untaught Basics. SSRN Electronic Journal, 0, , .	0.4	0
180	Get out of the BAG! Silos in Al Ethics Education: Unsupervised Topic Modeling Analysis of Global Al Curricula. Journal of Artificial Intelligence Research, 0, 73, 933-965.	7.0	9