Jean Christophe Mindeguia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2138852/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temperature, pore pressure and mass variation of concrete subjected to high temperature — Experimental and numerical discussion on spalling risk. Cement and Concrete Research, 2010, 40, 477-487.	4.6	185
2	Parametrical study of transient thermal strain of ordinary and high performance concrete. Cement and Concrete Research, 2013, 48, 40-52.	4.6	44
3	Experimental analysis of concrete spalling due to fire exposure. European Journal of Environmental and Civil Engineering, 2013, 17, 453-466.	1.0	42
4	Experimental discussion on the mechanisms behind the fire spalling of concrete. Fire and Materials, 2015, 39, 619-635.	0.9	40
5	On the influence of aggregate nature on concrete behaviour at high temperature. European Journal of Environmental and Civil Engineering, 2012, 16, 236-253.	1.0	32
6	Simulation of an experimental fire in an underground limestone quarry for the study of Paleolithic fires. International Journal of Thermal Sciences, 2017, 120, 1-18.	2.6	23
7	Behaviour of high-performance concrete at high temperatures: some highlights. RILEM Technical Letters, 0, 2, 45-52.	0.0	18
8	Structural Capacity of One-Way Spanning Large-Scale Cross-Laminated Timber Slabs in Standard and Natural Fires. Fire Technology, 2021, 57, 291-311.	1.5	17
9	Effect of compressive loading on the risk of spalling. MATEC Web of Conferences, 2013, 6, 01007.	0.1	16
10	Effect of elevated temperatures on concrete made with recycled concrete aggregates - An overview. Journal of Building Engineering, 2021, 44, 103235.	1.6	16
11	Experimental and numerical study of the thermomechanical behaviour of wood-based panels exposed to fire. Construction and Building Materials, 2018, 160, 668-678.	3.2	15
12	Terahertz Measurement of the Water Content Distribution in Wood Materials. Journal of Infrared, Millimeter, and Terahertz Waves, 2018, 39, 195-209.	1.2	11
13	Localized fire in a gallery: Model development and validation. International Journal of Thermal Sciences, 2019, 139, 144-159.	2.6	9
14	<scp>Thermoâ€mechanical</scp> behaviour of <scp>crossâ€laminated</scp> timber slabs under standard and natural fires. Fire and Materials, 2021, 45, 866-884.	0.9	9
15	Numerical Reconstruction of Paleolithic Fires in the Chauvet-Pont d'Arc Cave (Ardèche, France). Journal of Archaeological Method and Theory, 2021, 28, 604-616.	1.4	9
16	Spalling behaviour of concrete made with recycled concrete aggregates. Construction and Building Materials, 2022, 344, 128124.	3.2	9
17	Simulation of charring depth of timber structures when exposed to non-standard fire curves. Journal of Structural Fire Engineering, 2018, 9, 63-76.	0.4	5
18	FireFOAM simulation of a localised fire in a gallery. Journal of Physics: Conference Series, 2018, 1107, 042017	0.3	4

#	Article	IF	CITATIONS
19	Development of a Fluid–Structure Coupling Validated with a Confined Fire: Application to Painted Caves. Fire Technology, 2020, 56, 1197-1227.	1.5	4
20	A New Approach to Simulate Interface Damage in Brittle Matrix Composites. Procedia Structural Integrity, 2016, 2, 2456-2462.	0.3	3
21	Contactless Transient THz Temperature Imaging by Thermo-transmittance Technique on Semi-transparent Materials. Journal of Infrared, Millimeter, and Terahertz Waves, 2018, 39, 1112-1126.	1.2	3
22	An Adaptive Controller for Hybrid Fire Testing. Experimental Techniques, 2020, 44, 701-714.	0.9	3
23	Strategies to challenge the simulation of confined fires. Tunnelling and Underground Space Technology, 2021, 110, 103806.	3.0	3
24	A new experimental device for assessing the radial strains of concrete at high temperatures. Revue Européenne De Génie Civil, 2007, 11, 1187-1198.	0.0	1
25	Measurement of Water Content in a Wood Sample by Terahertz Imaging. , 2017, , .		0