Jeffrey J Saucerman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2138390/publications.pdf

Version: 2024-02-01

147726 143943 3,630 71 31 57 citations h-index g-index papers 80 80 80 5192 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. Nature Communications, 2017, 8, 548.	5.8	333
2	Modeling \hat{I}^2 -Adrenergic Control of Cardiac Myocyte Contractility in Silico. Journal of Biological Chemistry, 2003, 278, 47997-48003.	1.6	202
3	A Novel MitoTimer Reporter Gene for Mitochondrial Content, Structure, Stress, and Damage in Vivo. Journal of Biological Chemistry, 2014, 289, 12005-12015.	1.6	196
4	Mapping macrophage polarization over the myocardial infarction time continuum. Basic Research in Cardiology, 2018, 113, 26.	2.5	189
5	Identification of a novel mitochondrial uncoupler that does not depolarize the plasma membrane. Molecular Metabolism, 2014, 3, 114-123.	3.0	168
6	Calmodulin Mediates Differential Sensitivity of CaMKII and Calcineurin to Local Ca2+ in Cardiac Myocytes. Biophysical Journal, 2008, 95, 4597-4612.	0.2	138
7	Mechanical regulation of gene expression in cardiac myocytes and fibroblasts. Nature Reviews Cardiology, 2019, 16, 361-378.	6.1	134
8	Systems analysis of PKA-mediated phosphorylation gradients in live cardiac myocytes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12923-12928.	3.3	132
9	Regulation of nuclear PKA revealed by spatiotemporal manipulation of cyclic AMP. Nature Chemical Biology, 2012, 8, 375-382.	3.9	118
10	Synergy between CaMKII Substrates and Î ² -Adrenergic Signaling inÂRegulation of Cardiac Myocyte Ca2+ Handling. Biophysical Journal, 2010, 99, 2038-2047.	0.2	114
11	Proarrhythmic Consequences of a KCNQ1 AKAP-Binding Domain Mutation. Circulation Research, 2004, 95, 1216-1224.	2.0	110
12	Endotoxin depresses heart rate variability in mice: cytokine and steroid effects. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R1019-R1027.	0.9	102
13	Local plantar pressure relief in therapeutic footwear: design guidelines from finite element models. Journal of Biomechanics, 2005, 38, 1798-1806.	0.9	88
14	Modeling cardiac \hat{l}^2 -adrenergic signaling with normalized-Hill differential equations: comparison with a biochemical model. BMC Systems Biology, 2010, 4, 157.	3.0	86
15	Network Reconstruction and Systems Analysis of Cardiac Myocyte Hypertrophy Signaling. Journal of Biological Chemistry, 2012, 287, 42259-42268.	1.6	82
16	A computational model of cardiac fibroblast signaling predicts context-dependent drivers of myofibroblast differentiation. Journal of Molecular and Cellular Cardiology, 2016, 94, 72-81.	0.9	79
17	Mechanistic systems models of cell signaling networks: a case study of myocyte adrenergic regulation. Progress in Biophysics and Molecular Biology, 2004, 85, 261-278.	1.4	66
18	Computational modeling of cardiac fibroblasts and fibrosis. Journal of Molecular and Cellular Cardiology, 2016, 93, 73-83.	0.9	63

#	Article	IF	CITATIONS
19	Computational Models Reduce Complexity and Accelerate Insight Into Cardiac Signaling Networks. Circulation Research, 2011, 108, 85-97.	2.0	59
20	Mechanisms of cyclic AMP compartmentation revealed by computational models. Journal of General Physiology, 2014, 143, 39-48.	0.9	58
21	Calmodulin binding proteins provide domains of local Ca2+ signaling in cardiac myocytes. Journal of Molecular and Cellular Cardiology, 2012, 52, 312-316.	0.9	54
22	Predictive model identifies key network regulators of cardiomyocyte mechano-signaling. PLoS Computational Biology, 2017, 13, e1005854.	1.5	53
23	Cardiac beta-Adrenergic Signaling: From Subcellular Microdomains to Heart Failure. Annals of the New York Academy of Sciences, 2006, 1080, 348-361.	1.8	52
24	PKA catalytic subunit compartmentation regulates contractile and hypertrophic responses to \hat{l}^2 -adrenergic signaling. Journal of Molecular and Cellular Cardiology, 2014, 66, 83-93.	0.9	44
25	Bigger, Better, Faster. Journal of Cardiovascular Pharmacology, 2011, 58, 462-469.	0.8	42
26	Cytokine screening identifies NICU patients with Gram-negative bacteremia. Pediatric Research, 2012, 71, 261-266.	1.1	41
27	Phospholemman is a negative feed-forward regulator of Ca2+ in \hat{l}^2 -adrenergic signaling, accelerating \hat{l}^2 -adrenergic inotropy. Journal of Molecular and Cellular Cardiology, 2012, 52, 1048-1055.	0.9	40
28	Phenotypic screen quantifying differential regulation of cardiac myocyte hypertrophy identifies CITED4 regulation of myocyte elongation. Journal of Molecular and Cellular Cardiology, 2014, 72, 74-84.	0.9	40
29	Identification and Characterization of Poly(I:C)-induced Molecular Responses Attenuated by Nicotine in Mouse Macrophages. Molecular Pharmacology, 2013, 83, 61-72.	1.0	39
30	Knowledge gaps to understanding cardiac macrophage polarization following myocardial infarction. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 2288-2292.	1.8	39
31	Differential Integration of Ca2+-Calmodulin Signal in Intact Ventricular Myocytes at Low and High Affinity Ca2+-Calmodulin Targets. Journal of Biological Chemistry, 2008, 283, 31531-31540.	1.6	37
32	Modeling Regulation of Cardiac KATP and L-type Ca2+ Currents by ATP, ADP, and Mg2+. Biophysical Journal, 2005, 88, 2234-2249.	0.2	33
33	Whole-Genome Metabolic Network Reconstruction and Constraint-Based Modelingâ(†. Methods in Enzymology, 2011, 500, 411-433.	0.4	33
34	Automated image analysis identifies signaling pathways regulating distinct signatures of cardiac myocyte hypertrophy. Journal of Molecular and Cellular Cardiology, 2012, 52, 923-930.	0.9	32
35	Computational model predicts paracrine and intracellular drivers of fibroblast phenotype after myocardial infarction. Matrix Biology, 2020, 91-92, 136-151.	1.5	31
36	Multiscale Coupling of an Agent-Based Model of Tissue Fibrosis and a Logic-Based Model of Intracellular Signaling. Frontiers in Physiology, 2019, 10, 1481.	1.3	29

#	Article	IF	Citations
37	Mechanistic Systems Modeling to Improve Understanding and Prediction of Cardiotoxicity Caused by Targeted Cancer Therapeutics. Frontiers in Physiology, 2017, 8, 651.	1.3	26
38	Network Analysis Reveals a Distinct Axis of Macrophage Activation in Response to Conflicting Inflammatory Cues. Journal of Immunology, 2021, 206, 883-891.	0.4	26
39	Atg2, Atg9 and Atg18 in mitochondrial integrity, cardiac function and healthspan in Drosophila. Journal of Molecular and Cellular Cardiology, 2019, 127, 116-124.	0.9	25
40	Cardiac Models in Drug Discovery and Development: A Review. Critical Reviews in Biomedical Engineering, 2011, 39, 379-395.	0.5	25
41	Scaffold State Switching Amplifies, Accelerates, and Insulates Protein Kinase C Signaling. Journal of Biological Chemistry, 2014, 289, 2353-2360.	1.6	24
42	High content analysis identifies unique morphological features of reprogrammed cardiomyocytes. Scientific Reports, 2018, 8, 1258.	1.6	23
43	An engineering design approach to systems biology. Integrative Biology (United Kingdom), 2017, 9, 574-583.	0.6	22
44	A personalized, multiomics approach identifies genes involved in cardiac hypertrophy and heart failure. Npj Systems Biology and Applications, 2018, 4, 12.	1.4	22
45	Brahma safeguards canalization of cardiac mesoderm differentiation. Nature, 2022, 602, 129-134.	13.7	22
46	Automated imaging reveals a concentration dependent delay in reversibility of cardiac myocyte hypertrophy. Journal of Molecular and Cellular Cardiology, 2012, 53, 282-290.	0.9	21
47	Network-based predictions of in vivo cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 2018, 121, 180-189.	0.9	20
48	High-content phenotypic assay for proliferation of human iPSC-derived cardiomyocytes identifies L-type calcium channels as targets. Journal of Molecular and Cellular Cardiology, 2019, 127, 204-214.	0.9	20
49	A multiscale model of cardiac concentric hypertrophy incorporating both mechanical and hormonal drivers of growth. Biomechanics and Modeling in Mechanobiology, 2021, 20, 293-307.	1.4	19
50	Multiscale modeling in rodent ventricular myocytes. IEEE Engineering in Medicine and Biology Magazine, 2009, 28, 46-57.	1.1	18
51	Computational model of cardiomyocyte apoptosis identifies mechanisms of tyrosine kinase inhibitor-induced cardiotoxicity. Journal of Molecular and Cellular Cardiology, 2021, 155, 66-77.	0.9	18
52	Modeling the Effects of $\langle i \rangle \hat{i}^2 \langle i \rangle \langle sub \rangle 1 \langle sub \rangle$. Adrenergic Receptor Blockers and Polymorphisms on Cardiac Myocyte Ca $\langle sup \rangle 2$ + $\langle sup \rangle$ Handling. Molecular Pharmacology, 2014, 86, 222-230.	1.0	16
53	Network modelâ€based screen for FDAâ€approved drugs affecting cardiac fibrosis. CPT: Pharmacometrics and Systems Pharmacology, 2021, 10, 377-388.	1.3	16
54	Robustness portraits of diverse biological networks conserved despite order-of-magnitude parameter uncertainty. Bioinformatics, 2011, 27, 2888-2894.	1.8	15

#	Article	IF	CITATIONS
55	Quantification of model and data uncertainty in a network analysis of cardiac myocyte mechanosignalling. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190336.	1.6	12
56	Context-specific network modeling identifies new crosstalk in \hat{l}^2 -adrenergic cardiac hypertrophy. PLoS Computational Biology, 2020, 16, e1008490.	1.5	12
57	Inhibition of DYRK1a Enhances Cardiomyocyte Cycling After Myocardial Infarction. Circulation Research, 2022, 130, 1345-1361.	2.0	12
58	Systems Analysis of Small Signaling Modules Relevant to Eight Human Diseases. Annals of Biomedical Engineering, 2011, 39, 621-635.	1.3	10
59	Mechano-chemo signaling interactions modulate matrix production by cardiac fibroblasts. Matrix Biology Plus, 2021, 10, 100055.	1.9	9
60	Graphical Approach to Model Reduction for Nonlinear Biochemical Networks. PLoS ONE, 2011, 6, e23795.	1.1	8
61	Computational model of brain endothelial cell signaling pathways predicts therapeutic targets for cerebral pathologies. Journal of Molecular and Cellular Cardiology, 2022, 164, 17-28.	0.9	8
62	Integrating Fluorescent Biosensor Data Using Computational Models. Methods in Molecular Biology, 2014, 1071, 227-248.	0.4	6
63	Multiscale model of heart growth during pregnancy: integrating mechanical and hormonal signaling. Biomechanics and Modeling in Mechanobiology, 2022, 21, 1267-1283.	1.4	5
64	The Cell Surface Receptors Ror1/2 Control Cardiac Myofibroblast Differentiation. Journal of the American Heart Association, 2021, 10, e019904.	1.6	4
65	Automated image analysis of cardiac myocyte Ca ²⁺ dynamics., 2011, 2011, 4661-4.		2
66	Cardiac biexcitability: Two ways to catch a wave. Heart Rhythm, 2012, 9, 123-124.	0.3	2
67	Modeling Mitochondrial ROS: AÂGreat Balancing Act. Biophysical Journal, 2013, 105, 1287-1288.	0.2	1
68	Abstract 802: Dynamic FRET-Based Ca-Calmodulin Measurements in Intact Ventricular Myocytes Uncover Differential Signal Integration Due to Ca-Calmodulin Affinity. Circulation, 2007, 116 , .	1.6	1
69	A kinetic model of beta-adrenergic control in cardiac myocytes. Physiome, 2021, , .	0.3	0
70	A kinetic model of beta-adrenergic control in cardiac myocytes. Physiome, 2021, , .	0.3	0
71	PKA Activity Compartmentation Requires Slow Nuclear Transport Kinetics in Cardiac Myocytes. FASEB Journal, 2008, 22, 312-312.	0.2	0