
## Benjamin A Nault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2138203/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere.<br>Bulletin of the American Meteorological Society, 2022, 103, E761-E790.                                                                                                            | 1.7 | 39        |
| 2  | A systematic re-evaluation of methods for quantification of bulk particle-phase organic nitrates using real-time aerosol mass spectrometry. Atmospheric Measurement Techniques, 2022, 15, 459-483.                                                                                   | 1.2 | 15        |
| 3  | Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol.<br>Atmospheric Chemistry and Physics, 2022, 22, 805-821.                                                                                                                          | 1.9 | 5         |
| 4  | Evaluation of Secondary Organic Aerosol (SOA) Simulations for Seoul, Korea. Journal of Advances in<br>Modeling Earth Systems, 2022, 14, .                                                                                                                                            | 1.3 | 10        |
| 5  | Limitations in representation of physical processes prevent successful simulation of<br>PM <sub>2.5</sub> during KORUS-AQ. Atmospheric Chemistry and Physics,<br>2022, 22, 7933-7958.                                                                                                | 1.9 | 17        |
| 6  | Quantification and source characterization of volatile organic compounds from exercising and<br>application of chlorineâ€based cleaning products in a university athletic center. Indoor Air, 2021, 31,<br>1323-1339.                                                                | 2.0 | 32        |
| 7  | Airborne extractive electrospray mass spectrometry measurements of the chemical composition of organic aerosol. Atmospheric Measurement Techniques, 2021, 14, 1545-1559.                                                                                                             | 1.2 | 20        |
| 8  | Aerosol pH indicator and organosulfate detectability from aerosol mass spectrometry measurements.<br>Atmospheric Measurement Techniques, 2021, 14, 2237-2260.                                                                                                                        | 1.2 | 12        |
| 9  | HCOOH in the Remote Atmosphere: Constraints from Atmospheric Tomography (ATom) Airborne<br>Observations. ACS Earth and Space Chemistry, 2021, 5, 1436-1454.                                                                                                                          | 1.2 | 13        |
| 10 | The importance of size ranges in aerosol instrument intercomparisons: a case study for the<br>Atmospheric Tomography Mission. Atmospheric Measurement Techniques, 2021, 14, 3631-3655.                                                                                               | 1.2 | 34        |
| 11 | Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere. Communications Earth & Environment, 2021, 2, .                                                                                                                          | 2.6 | 32        |
| 12 | Sizing response of the Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) and Laser Aerosol<br>Spectrometer (LAS) to changes in submicron aerosol composition and refractive index. Atmospheric<br>Measurement Techniques, 2021, 14, 4517-4542.                                     | 1.2 | 28        |
| 13 | Impact of stratospheric air and surface emissions on tropospheric nitrous oxide during ATom.<br>Atmospheric Chemistry and Physics, 2021, 21, 11113-11132.                                                                                                                            | 1.9 | 5         |
| 14 | Secondary organic aerosols from anthropogenic volatile organic compounds contribute substantially to air pollution mortality. Atmospheric Chemistry and Physics, 2021, 21, 11201-11224.                                                                                              | 1.9 | 60        |
| 15 | Ambient aerosol properties in the remote atmosphere from global-scale in situ measurements.<br>Atmospheric Chemistry and Physics, 2021, 21, 15023-15063.                                                                                                                             | 1.9 | 15        |
| 16 | Machine Learning Uncovers Aerosol Size Information From Chemistry and Meteorology to Quantify<br>Potential Cloudâ€Forming Particles. Geophysical Research Letters, 2021, 48, .                                                                                                       | 1.5 | 7         |
| 17 | Relating geostationary satellite measurements of aerosol optical depth (AOD) over East Asia to fine particulate matter (PM <sub>2.5</sub> ): insights from the KORUS-AQ aircraft campaign and GEOS-Chem model simulations. Atmospheric Chemistry and Physics, 2021, 21, 16775-16791. | 1.9 | 18        |
| 18 | Large contribution of biomass burning emissions to ozone throughout the global remote<br>troposphere. Proceedings of the National Academy of Sciences of the United States of America, 2021,<br>118                                                                                  | 3.3 | 51        |

Benjamin A Nault

| #  | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Contribution of Organic Nitrates to Organic Aerosol over South Korea during KORUS-AQ.<br>Environmental Science & Technology, 2021, 55, 16326-16338.                                                                                           | 4.6  | 8         |
| 20 | Characterization of organic aerosol across the global remote troposphere: a comparison of ATom measurements and global chemistry models. Atmospheric Chemistry and Physics, 2020, 20, 4607-4635.                                              | 1.9  | 66        |
| 21 | Understanding and improving model representation of aerosol optical properties for a Chinese haze event measured during KORUS-AQ. Atmospheric Chemistry and Physics, 2020, 20, 6455-6478.                                                     | 1.9  | 18        |
| 22 | Ambient Quantification and Size Distributions for Organic Aerosol in Aerosol Mass Spectrometers with the New Capture Vaporizer. ACS Earth and Space Chemistry, 2020, 4, 676-689.                                                              | 1.2  | 10        |
| 23 | Quantitative detection of iodine in the stratosphere. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1860-1866.                                                                                  | 3.3  | 61        |
| 24 | Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in<br>the marine atmosphere. Proceedings of the National Academy of Sciences of the United States of<br>America, 2020, 117, 4505-4510.          | 3.3  | 118       |
| 25 | Investigation of factors controlling PM2.5 variability across the South Korean Peninsula during KORUS-AQ. Elementa, 2020, 8, .                                                                                                                | 1.1  | 44        |
| 26 | An evaluation of global organic aerosol schemes using airborne observations. Atmospheric Chemistry and Physics, 2020, 20, 2637-2665.                                                                                                          | 1.9  | 90        |
| 27 | Interferences with aerosol acidity quantification due to gas-phase ammonia uptake onto acidic sulfate<br>filter samples. Atmospheric Measurement Techniques, 2020, 13, 6193-6213.                                                             | 1.2  | 6         |
| 28 | Aerosol size distributions during the Atmospheric Tomography Mission (ATom): methods,<br>uncertainties, and data products. Atmospheric Measurement Techniques, 2019, 12, 3081-3099.                                                           | 1.2  | 59        |
| 29 | A simplified parameterization of isoprene-epoxydiol-derived secondary organic aerosol (IEPOX-SOA)<br>for global chemistry and climate models: a case study with GEOS-Chem v11-02-rc. Geoscientific Model<br>Development, 2019, 12, 2983-3000. | 1.3  | 22        |
| 30 | A large source of cloud condensation nuclei from new particle formation in the tropics. Nature, 2019, 574, 399-403.                                                                                                                           | 13.7 | 135       |
| 31 | Towards a satellite formaldehyde – in situ hybrid estimate for organic aerosol abundance.<br>Atmospheric Chemistry and Physics, 2019, 19, 2765-2785.                                                                                          | 1.9  | 15        |
| 32 | The potential role of methanesulfonic acid (MSA) in aerosol formation and growth and the associated radiative forcings. Atmospheric Chemistry and Physics, 2019, 19, 3137-3160.                                                               | 1.9  | 86        |
| 33 | Atmospheric Acetaldehyde: Importance of Airâ€6ea Exchange and a Missing Source in the Remote<br>Troposphere. Geophysical Research Letters, 2019, 46, 5601-5613.                                                                               | 1.5  | 41        |
| 34 | Integration of airborne and ground observations of nitryl chloride in the Seoul metropolitan area<br>and the implications on regional oxidation capacity during KORUS-AQ 2016. Atmospheric Chemistry and<br>Physics, 2019, 19, 12779-12795.   | 1.9  | 24        |
| 35 | Evaluation of the New Capture Vaporizer for Aerosol Mass Spectrometers (AMS): Elemental<br>Composition and Source Apportionment of Organic Aerosols (OA). ACS Earth and Space Chemistry,<br>2018, 2, 410-421.                                 | 1.2  | 24        |
| 36 | Evaluation of the new capture vaporizer for aerosol mass spectrometers: Characterization of organic aerosol mass spectra. Aerosol Science and Technology, 2018, 52, 725-739.                                                                  | 1.5  | 25        |

**BENJAMIN A NAULT** 

| #  | Article                                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Atmospheric oxidation in the presence of clouds during the Deep Convective Clouds and Chemistry (DC3) study. Atmospheric Chemistry and Physics, 2018, 18, 14493-14510.                                                                                                                           | 1.9 | 18        |
| 38 | Estimating Source Region Influences on Black Carbon Abundance, Microphysics, and Radiative Effect<br>Observed Over South Korea. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,527.                                                                                               | 1.2 | 24        |
| 39 | Secondary organic aerosol production from local emissions dominates the organic aerosol budget<br>over Seoul, South Korea, during KORUS-AQ. Atmospheric Chemistry and Physics, 2018, 18, 17769-17800.                                                                                            | 1.9 | 105       |
| 40 | Strong Contrast in Remote Black Carbon Aerosol Loadings Between the Atlantic and Pacific Basins.<br>Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,386.                                                                                                                           | 1.2 | 22        |
| 41 | Lightning NO <sub><i>x</i></sub> Emissions: Reconciling Measured and Modeled Estimates With<br>Updated NO <sub><i>x</i></sub> Chemistry. Geophysical Research Letters, 2017, 44, 9479-9488.                                                                                                      | 1.5 | 56        |
| 42 | Convective transport and scavenging of peroxides by thunderstorms observed over the central U.S.<br>during DC3. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4272-4295.                                                                                                            | 1.2 | 24        |
| 43 | Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and<br>monoterpene-rich atmosphere: constraints from aircraft<br>(SEAC <sup>4</sup> RS) and ground-based (SOAS) observations in the<br>Southeast US. Atmospheric Chemistry and Physics, 2016, 16, 5969-5991. | 1.9 | 173       |
| 44 | Observational Constraints on the Oxidation of NOx in the Upper Troposphere. Journal of Physical Chemistry A, 2016, 120, 1468-1478.                                                                                                                                                               | 1.1 | 23        |
| 45 | The Deep Convective Clouds and Chemistry (DC3) Field Campaign. Bulletin of the American<br>Meteorological Society, 2015, 96, 1281-1309.                                                                                                                                                          | 1.7 | 165       |

Measurements of CH<sub&amp;gt;3&amp;lt;/sub&amp;gt;O&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt;NO&amp;lt;sub&am**p;g**t;2</sub&a in the upper troposphere. Atmospheric Measurement Techniques, 2015, 8, 987-997. 46