
Benjamin A Nault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2138203/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC ⁴ RS) and ground-based (SOAS) observations in the Southeast US. Atmospheric Chemistry and Physics, 2016, 16, 5969-5991.	1.9	173
2	The Deep Convective Clouds and Chemistry (DC3) Field Campaign. Bulletin of the American Meteorological Society, 2015, 96, 1281-1309.	1.7	165
3	A large source of cloud condensation nuclei from new particle formation in the tropics. Nature, 2019, 574, 399-403.	13.7	135
4	Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4505-4510.	3.3	118
5	Secondary organic aerosol production from local emissions dominates the organic aerosol budget over Seoul, South Korea, during KORUS-AQ. Atmospheric Chemistry and Physics, 2018, 18, 17769-17800.	1.9	105
6	An evaluation of global organic aerosol schemes using airborne observations. Atmospheric Chemistry and Physics, 2020, 20, 2637-2665.	1.9	90
7	The potential role of methanesulfonic acid (MSA) in aerosol formation and growth and the associated radiative forcings. Atmospheric Chemistry and Physics, 2019, 19, 3137-3160.	1.9	86
8	Characterization of organic aerosol across the global remote troposphere: a comparison of ATom measurements and global chemistry models. Atmospheric Chemistry and Physics, 2020, 20, 4607-4635.	1.9	66
9	Quantitative detection of iodine in the stratosphere. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1860-1866.	3.3	61
10	Secondary organic aerosols from anthropogenic volatile organic compounds contribute substantially to air pollution mortality. Atmospheric Chemistry and Physics, 2021, 21, 11201-11224.	1.9	60
11	Aerosol size distributions during the Atmospheric Tomography Mission (ATom): methods, uncertainties, and data products. Atmospheric Measurement Techniques, 2019, 12, 3081-3099.	1.2	59
12	Lightning NO _{<i>x</i>} Emissions: Reconciling Measured and Modeled Estimates With Updated NO _{<i>x</i>} Chemistry. Geophysical Research Letters, 2017, 44, 9479-9488.	1.5	56
13	Large contribution of biomass burning emissions to ozone throughout the global remote troposphere. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	51
14	Investigation of factors controlling PM2.5 variability across the South Korean Peninsula during KORUS-AQ. Elementa, 2020, 8, .	1.1	44
15	Atmospheric Acetaldehyde: Importance of Airâ€Sea Exchange and a Missing Source in the Remote Troposphere. Geophysical Research Letters, 2019, 46, 5601-5613.	1.5	41
16	The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere. Bulletin of the American Meteorological Society, 2022, 103, E761-E790.	1.7	39
17	Measurements of CH ₃ O ₂ NO <sub in the upper troposphere. Atmospheric Measurement Techniques, 2015, 8, 987-997.</sub 	&am p;g t;28	.am ֆ jlt;/sub&
18	The importance of size ranges in aerosol instrument intercomparisons: a case study for the Atmospheric Tomography Mission. Atmospheric Measurement Techniques, 2021, 14, 3631-3655.	1.2	34

Benjamin A Nault

#	Article	IF	CITATIONS
19	Quantification and source characterization of volatile organic compounds from exercising and application of chlorineâ€based cleaning products in a university athletic center. Indoor Air, 2021, 31, 1323-1339.	2.0	32
20	Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere. Communications Earth & Environment, 2021, 2, .	2.6	32
21	Sizing response of the Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) and Laser Aerosol Spectrometer (LAS) to changes in submicron aerosol composition and refractive index. Atmospheric Measurement Techniques, 2021, 14, 4517-4542.	1.2	28
22	Evaluation of the new capture vaporizer for aerosol mass spectrometers: Characterization of organic aerosol mass spectra. Aerosol Science and Technology, 2018, 52, 725-739.	1.5	25
23	Convective transport and scavenging of peroxides by thunderstorms observed over the central U.S. during DC3. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4272-4295.	1.2	24
24	Evaluation of the New Capture Vaporizer for Aerosol Mass Spectrometers (AMS): Elemental Composition and Source Apportionment of Organic Aerosols (OA). ACS Earth and Space Chemistry, 2018, 2, 410-421.	1.2	24
25	Estimating Source Region Influences on Black Carbon Abundance, Microphysics, and Radiative Effect Observed Over South Korea. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,527.	1.2	24
26	Integration of airborne and ground observations of nitryl chloride in the Seoul metropolitan area and the implications on regional oxidation capacity during KORUS-AQ 2016. Atmospheric Chemistry and Physics, 2019, 19, 12779-12795.	1.9	24
27	Observational Constraints on the Oxidation of NOx in the Upper Troposphere. Journal of Physical Chemistry A, 2016, 120, 1468-1478.	1.1	23
28	Strong Contrast in Remote Black Carbon Aerosol Loadings Between the Atlantic and Pacific Basins. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,386.	1.2	22
29	A simplified parameterization of isoprene-epoxydiol-derived secondary organic aerosol (IEPOX-SOA) for global chemistry and climate models: a case study with GEOS-Chem v11-02-rc. Geoscientific Model Development, 2019, 12, 2983-3000.	1.3	22
30	Airborne extractive electrospray mass spectrometry measurements of the chemical composition of organic aerosol. Atmospheric Measurement Techniques, 2021, 14, 1545-1559.	1.2	20
31	Atmospheric oxidation in the presence of clouds during the Deep Convective Clouds and Chemistry (DC3) study. Atmospheric Chemistry and Physics, 2018, 18, 14493-14510.	1.9	18
32	Understanding and improving model representation of aerosol optical properties for a Chinese haze event measured during KORUS-AQ. Atmospheric Chemistry and Physics, 2020, 20, 6455-6478.	1.9	18
33	Relating geostationary satellite measurements of aerosol optical depth (AOD) over East Asia to fine particulate matter (PM _{2.5}): insights from the KORUS-AQ aircraft campaign and GEOS-Chem model simulations. Atmospheric Chemistry and Physics, 2021, 21, 16775-16791.	1.9	18
34	Limitations in representation of physical processes prevent successful simulation of PM _{2.5} during KORUS-AQ. Atmospheric Chemistry and Physics, 2022, 22, 7933-7958.	1.9	17
35	Towards a satellite formaldehyde – in situ hybrid estimate for organic aerosol abundance. Atmospheric Chemistry and Physics, 2019, 19, 2765-2785.	1.9	15
36	Ambient aerosol properties in the remote atmosphere from global-scale in situ measurements. Atmospheric Chemistry and Physics, 2021, 21, 15023-15063.	1.9	15

Benjamin A Nault

#	Article	IF	CITATIONS
37	A systematic re-evaluation of methods for quantification of bulk particle-phase organic nitrates using real-time aerosol mass spectrometry. Atmospheric Measurement Techniques, 2022, 15, 459-483.	1.2	15
38	HCOOH in the Remote Atmosphere: Constraints from Atmospheric Tomography (ATom) Airborne Observations. ACS Earth and Space Chemistry, 2021, 5, 1436-1454.	1.2	13
39	Aerosol pH indicator and organosulfate detectability from aerosol mass spectrometry measurements. Atmospheric Measurement Techniques, 2021, 14, 2237-2260.	1.2	12
40	Ambient Quantification and Size Distributions for Organic Aerosol in Aerosol Mass Spectrometers with the New Capture Vaporizer. ACS Earth and Space Chemistry, 2020, 4, 676-689.	1.2	10
41	Evaluation of Secondary Organic Aerosol (SOA) Simulations for Seoul, Korea. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	10
42	Contribution of Organic Nitrates to Organic Aerosol over South Korea during KORUS-AQ. Environmental Science & Technology, 2021, 55, 16326-16338.	4.6	8
43	Machine Learning Uncovers Aerosol Size Information From Chemistry and Meteorology to Quantify Potential Cloudâ€Forming Particles. Geophysical Research Letters, 2021, 48, .	1.5	7
44	Interferences with aerosol acidity quantification due to gas-phase ammonia uptake onto acidic sulfate filter samples. Atmospheric Measurement Techniques, 2020, 13, 6193-6213.	1.2	6
45	Impact of stratospheric air and surface emissions on tropospheric nitrous oxide during ATom. Atmospheric Chemistry and Physics, 2021, 21, 11113-11132.	1.9	5
46	Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol. Atmospheric Chemistry and Physics, 2022, 22, 805-821.	1.9	5