Xiao-Rong Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2137915/publications.pdf

Version: 2024-02-01

17	457	11	17
papers	citations	h-index	g-index
19	19	19	1109
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Activation of Peripheral Group III Metabotropic Glutamate Receptors Suppressed Formalinâ€induced Nociception. Clinical and Experimental Pharmacology and Physiology, 2021, , .	1.9	1
2	Oxidative and nitrosative stress in the neurotoxicity of polybrominated diphenyl ether-153: possible mechanism and potential targeted intervention. Chemosphere, 2020, 238, 124602.	8.2	12
3	Biodegradable Multifunctional Nanotheranostic Based on Ag ₂ S-Doped Hollow BSA-SiO ₂ for Enhancing ROS-Feedback Synergistic Antitumor Therapy. ACS Applied Materials & Diterfaces, 2020, 12, 54356-54366.	8.0	18
4	Regulation of the SIRT1 signaling pathway in NMDA-induced Excitotoxicity. Toxicology Letters, 2020, 322, 66-76.	0.8	14
5	Age-related shifts in gut microbiota contribute to cognitive decline in aged rats. Aging, 2020, 12, 7801-7817.	3.1	61
6	Endoplasmic reticulum rather than mitochondria plays a major role in the neuronal apoptosis induced by polybrominated diphenyl ether-153. Toxicology Letters, 2019, 311, 37-48.	0.8	8
7	Chronic Intermittent Ethanol Exposure Induces Upregulation of Matrix Metalloproteinase-9 in the Rat Medial Prefrontal Cortex and Hippocampus. Neurochemical Research, 2019, 44, 1593-1601.	3.3	8
8	Genistein protects against ox-LDL-induced senescence through enhancing SIRT1/LKB1/AMPK-mediated autophagy flux in HUVECs. Molecular and Cellular Biochemistry, 2019, 455, 127-134.	3.1	45
9	Neurotrophins and cholinergic enzyme regulated by calpain-2: New insights into neuronal apoptosis induced by polybrominated diphenyl ether-153. Toxicology Letters, 2018, 291, 29-38.	0.8	6
10	Post-ischemic administration of 5-methoxyindole-2-carboxylic acid at the onset of reperfusion affords neuroprotection against stroke injury by preserving mitochondrial function and attenuating oxidative stress. Biochemical and Biophysical Research Communications, 2018, 497, 444-450.	2.1	21
11	Genetic analysis for the grain number heterosis of a super-hybrid rice WFYT025 combination using RNA-Seq. Rice, 2018, 11, 37.	4.0	39
12	Humanin Attenuates NMDA-Induced Excitotoxicity by Inhibiting ROS-dependent JNK/p38 MAPK Pathway. International Journal of Molecular Sciences, 2018, 19, 2982.	4.1	33
13	Role and Possible Mechanisms of Sirt1 in Depression. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-6.	4.0	73
14	Calpain-2/p35-p25/Cdk5 pathway is involved in the neuronal apoptosis induced by polybrominated diphenyl ether-153. Toxicology Letters, 2017, 277, 41-53.	0.8	13
15	The Neuroprotective Effects of SIRT1 on NMDA-Induced Excitotoxicity. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-11.	4.0	22
16	Involvement of MAPK pathways in NMDA-induced apoptosis of rat cortical neurons. Acta Physiologica Sinica, 2012, 64, 609-16.	0.5	5
17	Necroptosis contributes to the NMDA-induced excitotoxicity in rat's cultured cortical neurons. Neuroscience Letters, 2008, 447, 120-123.	2.1	78