
Johan Van de Voorde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2137726/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combined glucocorticoid resistance and hyperlactatemia contributes to lethal shock in sepsis. Cell Metabolism, 2021, 33, 1763-1776.e5.	16.2	28
2	Search for the Source of the Retinal Relaxing Factor. Current Eye Research, 2018, 43, 1383-1388.	1.5	0
3	Characterization of the retina-induced relaxation in mice. Graefe's Archive for Clinical and Experimental Ophthalmology, 2018, 256, 1905-1912.	1.9	1
4	Response to exercise and mechanical efficiency in nonâ€ischaemic stunning, induced by shortâ€term rapid pacing in dogs: a role for calcium?. Acta Physiologica, 2017, 219, 768-780.	3.8	4
5	Erectile Dysfunction in Heme-Deficient Nitric Oxide–Unresponsive Soluble Guanylate Cyclase Knock-In Mice. Journal of Sexual Medicine, 2017, 14, 196-204.	0.6	9
6	Inhibition of Cyclic GMP Export by Multidrug Resistance Protein 4: A New Strategy to Treat Erectile Dysfunction?. Journal of Sexual Medicine, 2017, 14, 502-509.	0.6	11
7	Ferulic acid-4- O -sulfate rather than ferulic acid relaxes arteries and lowers blood pressure in mice. Journal of Nutritional Biochemistry, 2017, 44, 44-51.	4.2	37
8	Vasorelaxant activity of twenty-one physiologically relevant (poly)phenolic metabolites on isolated mouse arteries. Food and Function, 2017, 8, 4331-4335.	4.6	20
9	At the cross-point of connexins, calcium, and ATP: blocking hemichannels inhibits vasoconstriction of rat small mesenteric arteries. Cardiovascular Research, 2017, 113, 195-206.	3.8	37
10	The Retinal Relaxing Factor: Update on an Enigmatic Regulator of the Retinal Circulation. , 2017, 58, 1702.		3
11	Ruthenium-based nitric oxide-donating and carbon monoxide-donating molecules. Journal of Pharmacy and Pharmacology, 2016, 68, 293-304.	2.4	14
12	Protective effect of resveratrol and quercetin on in vitro-induced diabetic mouse corpus cavernosum. Cardiovascular Diabetology, 2016, 15, 46.	6.8	24
13	Effect of resveratrol and orchidectomy on the vasorelaxing influence of perivascular adipose tissue. Heart and Vessels, 2016, 31, 608-615.	1.2	5
14	The influence of ruthenium on vascular tone. Journal of Pharmacy and Pharmacology, 2015, 67, 1263-1271.	2.4	3
15	Cardiovascular and pharmacological implications of haem-deficient NO-unresponsive soluble guanylate cyclase knock-in mice. Nature Communications, 2015, 6, 8482.	12.8	64
16	Treatment of erectile dysfunction: New targets and strategies from recent research. Pharmacology Biochemistry and Behavior, 2014, 121, 146-157.	2.9	17
17	Perivascular Adipose Tissue, Inflammation and Vascular Dysfunction in Obesity. Current Vascular Pharmacology, 2014, 12, 403-411.	1.7	32
18	Adipocytokines in relation to cardiovascular disease. Metabolism: Clinical and Experimental, 2013, 62, 1513-1521	3.4	177

Johan Van de Voorde

#	Article	IF	CITATIONS
19	Adipose Tissue as Regulator of Vascular Tone. Current Hypertension Reports, 2012, 14, 270-278.	3.5	30
20	Divergent mechanisms involved in CO and CORM-2 induced vasorelaxation. European Journal of Pharmacology, 2012, 674, 370-377.	3.5	34
21	InÂvitro and inÂvivo studies on the importance of the soluble guanylyl cyclase α1 subunit in penile erection. World Journal of Urology, 2010, 28, 643-650.	2.2	4
22	Hypoxia enhances the relaxing influence of perivascular adipose tissue in isolated mice aorta. European Journal of Pharmacology, 2010, 641, 207-212.	3.5	25
23	Characterization of the effect of histamine on mouse corpus cavernosum. Inflammation Research, 2008, 57, 59-60.	4.0	3
24	The endothelium-derived hyperpolarising factor (EDHF) in isolated bovine choroidal arteries. Experimental Eye Research, 2007, 84, 1067-1073.	2.6	4
25	Control of Retinal Arterial Tone by a Paracrine Retinal Relaxing Factor. Microcirculation, 2007, 14, 39-48.	1.8	23
26	K+ potentiates hyperosmolarity-induced vasorelaxations in rat skeletal muscle arterioles. European Journal of Applied Physiology, 2006, 96, 679-685.	2.5	0