Fernando M Machado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2137668/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. Journal of Hazardous Materials, 2011, 192, 1122-1131.	6.5	309
2	Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents. Journal of Hazardous Materials, 2015, 289, 18-27.	6.5	276
3	Kinetic and Equilibrium Models of Adsorption. Carbon Nanostructures, 2015, , 33-69.	0.1	177
4	Adsorption of sodium diclofenac on graphene: a combined experimental and theoretical study. Physical Chemistry Chemical Physics, 2016, 18, 1526-1536.	1.3	158
5	Adsorption of Reactive Blue 4 dye from water solutions by carbon nanotubes: experiment and theory. Physical Chemistry Chemical Physics, 2012, 14, 11139.	1.3	155
6	Adsorption of Direct Blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon. Journal of Environmental Management, 2013, 130, 166-175.	3.8	154
7	Comparison of a homemade cocoa shell activated carbon with commercial activated carbon for the removal of reactive violet 5 dye from aqueous solutions. Chemical Engineering Journal, 2014, 248, 315-326.	6.6	141
8	Preparation, characterization and application of microwave-assisted activated carbons from wood chips for removal of phenol from aqueous solution. Journal of Molecular Liquids, 2016, 223, 1067-1080.	2.3	130
9	Microwave-assisted activated carbon obtained from the sludge of tannery-treatment effluent plant for removal of leather dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 504, 105-115.	2.3	129
10	Adsorption of Alizarin Red S Dye by Carbon Nanotubes: An Experimental and Theoretical Investigation. Journal of Physical Chemistry C, 2016, 120, 18296-18306.	1.5	103
11	Single-step pyrolysis for producing magnetic activated carbon from tucumã (Astrocaryum aculeatum) seed and nickel(II) chloride and zinc(II) chloride. Application for removal of nicotinamide and propanolol. Journal of Hazardous Materials, 2020, 398, 122903.	6.5	96
12	Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications. Carbon Nanostructures, 2015, , .	0.1	73
13	Kinetic, equilibrium, and thermodynamic studies on the adsorption of ciprofloxacin by activated carbon produced from Jerivá (Syagrus romanzoffiana). Environmental Science and Pollution Research, 2019, 26, 4690-4702.	2.7	64
14	New carbon composite adsorbents for the removal of textile dyes from aqueous solutions: Kinetic, equilibrium, and thermodynamic studies. Korean Journal of Chemical Engineering, 2014, 31, 1470-1479.	1.2	51
15	Comparison of acidic leaching using a conventional and ultrasound-assisted method for preparation of magnetic-activated biochar. Journal of Environmental Chemical Engineering, 2021, 9, 105865.	3.3	50
16	Adsorption of acridine orange and methylene blue synthetic dyes and anthracene on single wall carbon nanotubes: A first principle approach. Computational and Theoretical Chemistry, 2016, 1076, 42-50.	1.1	47
17	Adsorption of a textile dye from aqueous solutions by carbon nanotubes. Materials Research, 2014, 17, 153-160.	0.6	41
18	Analysis of nonisothermal crystallization kinetics of graphene oxide - reinforced polyamide 6 nanocomposites. Thermochimica Acta, 2018, 667, 111-121.	1.2	37

Fernando M Machado

#	Article	IF	CITATIONS
19	Adsorption of anti-inflammatory nimesulide by graphene materials: a combined theoretical and experimental study. Physical Chemistry Chemical Physics, 2017, 19, 22099-22110.	1.3	34
20	Comparison of a Homemade Bacuri Shell Activated Carbon With Carbon Nanotubes for Food Dye Removal. Clean - Soil, Air, Water, 2015, 43, 1389-1400.	0.7	32
21	Preparation, characterization of titanate nanosheet–pozzolan nanocomposite and its use as an adsorbent for removal of diclofenac from simulated hospital effluents. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102, 321-329.	2.7	31
22	Adsorption of amoxicillin onto high surface area–activated carbons based on olive biomass: kinetic and equilibrium studies. Environmental Science and Pollution Research, 2020, 27, 41394-41404.	2.7	25
23	Ceramic foam decorated with ZnO for photodegradation of Rhodamine B dye. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2019, 58, 134-140.	0.9	18
24	Utilization of different parts of Moringa oleifera Lam. seeds as biosorbents to remove Acid Blue 9 synthetic dye. Journal of Environmental Chemical Engineering, 2021, 9, 105553.	3.3	17
25	Carbon Nanoadsorbents. Carbon Nanostructures, 2015, , 11-32.	0.1	15
26	Comparative studies of physicochemical and adsorptive properties of biochar materials from biomass using different zinc salts as activating agents. Journal of Environmental Chemical Engineering, 2022, 10, 107632.	3.3	11
27	Application of Carbon Composite Adsorbents Prepared from Coffee Waste and Clay for the Removal of Reactive Dyes from Aqueous Solutions. Journal of the Brazilian Chemical Society, 2015, , .	0.6	5
28	Carbon Nanomaterials for Environmental Applications. Carbon Nanostructures, 2015, , 85-105.	0.1	5
29	Espumas vÃtreas produzidas a partir de resÃduos sólidos. Revista Materia, 2018, 23, .	0.1	5
30	Eggshells as agroâ€industrial waste substitute for CaCO 3 in glass foams: A study on obtaining lower thermal conductivity. International Journal of Applied Ceramic Technology, 2021, 18, 838-849.	1.1	4
31	Influence of processing parameters on the microstructure of the ecoâ€friendly glass foam. International Journal of Applied Ceramic Technology, 2021, 18, 862-868.	1.1	3
32	Experimental Adsorption. Carbon Nanostructures, 2015, , 71-84.	0.1	3
33	Desenvolvimento de espumas vÃŧreas a partir de garrafa e casca de ovo. Revista Materia, 2019, 24, .	0.1	2
34	Materials for Adsorbent Applications. , 2011, , 141-155.		2
35	SÃntese e caracterização de óxido de grafeno e óxido de grafeno reduzido para aplicação ambiental. Revista Brasileira De Engenharia E Sustentabilidade, 2017, 3, 19.	0.1	2
36	Carbon Nanoadsorbents for Removal of Organic Contaminants from Water. Springer Series on Polymer and Composite Materials, 2018, , 21-53.	0.5	1

#	Article	IF	CITATIONS
37	Preliminary evaluation of the physical properties of red ceramic incorporated with solid residue. MRS Advances, 2018, 3, 3575-3579.	0.5	0
38	Degradação fotocatalÃŧica de ciprofloxacina usando óxido de zinco em espuma vÃŧrea. Revista Brasileira De Engenharia E Sustentabilidade, 2017, 3, 13.	0.1	0
39	PRODUÇÃO DE ESPUMAS VÃTREAS DE BAIXO IMPACTO AMBIENTAL. Revista Brasileira De Engenharia E Sustentabilidade, 2017, 3, 1.	0.1	0
40	NANOCOMPÓSITO POLÃMERICO DE POLIAMIDA 6 REFORÇADO COM ÓXIDO DE GRAFENO: PROCESSAMENTO VIA MISTURA EM SOLUÇÃO. Revista Brasileira De Engenharia E Sustentabilidade, 2017, 3, 33.	О _{0.1}	0