
Tal Pupko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2137617/publications.pdf Version: 2024-02-01

TAL DUDKO

#	Article	IF	CITATIONS
1	ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research, 2016, 44, W344-W350.	14.5	2,395
2	ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Research, 2010, 38, W529-W533.	14.5	1,592
3	ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Research, 2005, 33, W299-W302.	14.5	1,255
4	ConSurf: Identification of Functional Regions in Proteins by Surface-Mapping of Phylogenetic Information. Bioinformatics, 2003, 19, 163-164.	4.1	1,082
5	GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Research, 2015, 43, W7-W14.	14.5	707
6	GUIDANCE: a web server for assessing alignment confidence scores. Nucleic Acids Research, 2010, 38, W23-W28.	14.5	560
7	Rate4Site: an algorithmic tool for the identification of functional regions in proteins by surface mapping of evolutionary determinants within their homologues. Bioinformatics, 2002, 18, S71-S77.	4.1	536
8	ConSurf: Using Evolutionary Data to Raise Testable Hypotheses about Protein Function. Israel Journal of Chemistry, 2013, 53, 199-206.	2.3	459
9	ConSeq: the identification of functionally and structurally important residues in protein sequences. Bioinformatics, 2004, 20, 1322-1324.	4.1	458
10	Comparison of Site-Specific Rate-Inference Methods for Protein Sequences: Empirical Bayesian Methods Are Superior. Molecular Biology and Evolution, 2004, 21, 1781-1791.	8.9	405
11	A Fast Algorithm for Joint Reconstruction of Ancestral Amino Acid Sequences. Molecular Biology and Evolution, 2000, 17, 890-896.	8.9	329
12	An Alignment Confidence Score Capturing Robustness to Guide Tree Uncertainty. Molecular Biology and Evolution, 2010, 27, 1759-1767.	8.9	313
13	FastML: a web server for probabilistic reconstruction of ancestral sequences. Nucleic Acids Research, 2012, 40, W580-W584.	14.5	295
14	Selecton 2007: advanced models for detecting positive and purifying selection using a Bayesian inference approach. Nucleic Acids Research, 2007, 35, W506-W511.	14.5	290
15	Comparative Analysis Identifies Exonic Splicing Regulatory Sequences—The Complex Definition of Enhancers and Silencers. Molecular Cell, 2006, 22, 769-781.	9.7	275
16	Model selection may not be a mandatory step for phylogeny reconstruction. Nature Communications, 2019, 10, 934.	12.8	266
17	Differential GC Content between Exons and Introns Establishes Distinct Strategies of Splice-Site Recognition. Cell Reports, 2012, 1, 543-556.	6.4	249
18	Rodent phylogeny revised: analysis of six nuclear genes from all major rodent clades. BMC Evolutionary Biology, 2009, 9, 71.	3.2	242

#	Article	IF	CITATIONS
19	Genome-Scale Identification of Legionella pneumophila Effectors Using a Machine Learning Approach. PLoS Pathogens, 2009, 5, e1000508.	4.7	236
20	Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires. Nature Genetics, 2016, 48, 167-175.	21.4	235
21	Computational characterization of B-cell epitopes. Molecular Immunology, 2008, 45, 3477-3489.	2.2	194
22	The interface of protein structure, protein biophysics, and molecular evolution. Protein Science, 2012, 21, 769-785.	7.6	188
23	The Complexity Hypothesis Revisited: Connectivity Rather Than Function Constitutes a Barrier to Horizontal Gene Transfer. Molecular Biology and Evolution, 2011, 28, 1481-1489.	8.9	187
24	Epitopia: a web-server for predicting B-cell epitopes. BMC Bioinformatics, 2009, 10, 287.	2.6	177
25	Combined Analysis of Variation in Core, Accessory and Regulatory Genome Regions Provides a Super-Resolution View into the Evolution of Bacterial Populations. PLoS Genetics, 2016, 12, e1006280.	3.5	177
26	Computational modeling and experimental validation of the <i>Legionella</i> and <i>Coxiella</i> virulence-related type-IVB secretion signal. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E707-15.	7.1	166
27	Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes. Genome Research, 2008, 18, 88-103.	5.5	161
28	Combining Multiple Data Sets in a Likelihood Analysis: Which Models are the Best?. Molecular Biology and Evolution, 2002, 19, 2294-2307.	8.9	136
29	A Model-Based Approach for Detecting Coevolving Positions in a Molecule. Molecular Biology and Evolution, 2005, 22, 1919-1928.	8.9	131
30	Selecton: a server for detecting evolutionary forces at a single amino-acid site. Bioinformatics, 2005, 21, 2101-2103.	4.1	129
31	A Gamma mixture model better accounts for among site rate heterogeneity. Bioinformatics, 2005, 21, ii151-ii158.	4.1	129
32	Pepitope: epitope mapping from affinity-selected peptides. Bioinformatics, 2007, 23, 3244-3246.	4.1	129
33	Improving the Performance of Positive Selection Inference by Filtering Unreliable Alignment Regions. Molecular Biology and Evolution, 2012, 29, 1-5.	8.9	124
34	A Combined Empirical and Mechanistic Codon Model. Molecular Biology and Evolution, 2006, 24, 388-397.	8.9	123
35	CLOOME: gain loss mapping engine. Bioinformatics, 2010, 26, 2914-2915.	4.1	122
36	The ConSurf-HSSP database: The mapping of evolutionary conservation among homologs onto PDB structures. Proteins: Structure, Function and Bioinformatics, 2004, 58, 610-617.	2.6	115

#	Article	IF	CITATIONS
37	A machine-learning approach for predicting B-cell epitopes. Molecular Immunology, 2009, 46, 840-847.	2.2	108
38	A branch-and-bound algorithm for the inference of ancestral amino-acid sequences when the replacement rate varies among sites: Application to the evolution of five gene families. Bioinformatics, 2002, 18, 1116-1123.	4.1	102
39	Epitope mapping using combinatorial phage-display libraries: a graph-based algorithm. Nucleic Acids Research, 2007, 35, 69-78.	14.5	102
40	A Structural EM Algorithm for Phylogenetic Inference. Journal of Computational Biology, 2002, 9, 331-353.	1.6	95
41	Changes in exon–intron structure during vertebrate evolution affect the splicing pattern of exons. Genome Research, 2012, 22, 35-50.	5.5	88
42	M1CR0B1AL1Z3R—a user-friendly web server for the analysis of large-scale microbial genomics data. Nucleic Acids Research, 2019, 47, W88-W92.	14.5	86
43	Stepwise prediction of conformational discontinuous B-cell epitopes using the Mapitope algorithm. Proteins: Structure, Function and Bioinformatics, 2007, 68, 294-304.	2.6	82
44	Inference and Characterization of Horizontally Transferred Gene Families Using Stochastic Mapping. Molecular Biology and Evolution, 2010, 27, 703-713.	8.9	81
45	SMARCA2 and other genome-wide supported schizophrenia-associated genes: regulation by REST/NRSF, network organization and primate-specific evolution. Human Molecular Genetics, 2010, 19, 2841-2857.	2.9	78
46	A covarion-based method for detecting molecular adaptation: application to the evolution of primate mitochondrial genomes. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1313-1316.	2.6	67
47	Identification of novel <scp><i>X</i></scp> <i>anthomonas euvesicatoria</i> type <scp>III</scp> effector proteins by a machineâ€learning approach. Molecular Plant Pathology, 2016, 17, 398-411.	4.2	66
48	The "Alternative―Choice of Constitutive Exons throughout Evolution. PLoS Genetics, 2007, 3, e203.	3.5	63
49	DNA motifs determining the efficiency of adaptation into the <i>Escherichia coli</i> CRISPR array. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14396-14401.	7.1	62
50	Towards realistic codon models: among site variability and dependency of synonymous and non-synonymous rates. Bioinformatics, 2007, 23, i319-i327.	4.1	60
51	Transfer of noncoding DNA drives regulatory rewiring in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16112-16117.	7.1	59
52	The Conserved Carboxy Terminus of the Capsid Domain of Human Immunodeficiency Virus Type 1 Gag Protein Is Important for Virion Assembly and Release. Journal of Virology, 2004, 78, 9675-9688.	3.4	57
53	Evolution of Microsatellites in the Yeast Saccharomyces cerevisiae: Role of Length and Number of Repeated Units. Journal of Molecular Evolution, 1999, 48, 313-316.	1.8	56
54	Identification of Novel Coxiella burnetii Icm/Dot Effectors and Genetic Analysis of Their Involvement in Modulating a Mitogen-Activated Protein Kinase Pathway. Infection and Immunity, 2014, 82, 3740-3752.	2.2	55

#	Article	IF	CITATIONS
55	The Permian Bacterium that Isn't. Molecular Biology and Evolution, 2001, 18, 1143-1146.	8.9	54
56	Incomplete Directed Perfect Phylogeny. SIAM Journal on Computing, 2004, 33, 590-607.	1.0	54
57	Evolutionary Models Accounting for Layers of Selection in Protein-Coding Genes and their Impact on the Inference of Positive Selection. Molecular Biology and Evolution, 2011, 28, 3297-3308.	8.9	54
58	In silico identification of functional regions in proteins. Bioinformatics, 2005, 21, i328-i337.	4.1	51
59	State-of the art methodologies dictate new standards for phylogenetic analysis. BMC Evolutionary Biology, 2013, 13, 161.	3.2	51
60	Type III secretion system effectors form robust and flexible intracellular virulence networks. Science, 2021, 371, .	12.6	50
61	Deep Panning: Steps towards Probing the IgOme. PLoS ONE, 2012, 7, e41469.	2.5	46
62	Inference of Gain and Loss Events from Phyletic Patterns Using Stochastic Mapping and Maximum Parsimony—A Simulation Study. Genome Biology and Evolution, 2011, 3, 1265-1275.	2.5	45
63	A likelihood framework to analyse phyletic patterns. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 3903-3911.	4.0	44
64	Show me your secret(ed) weapons: a multifaceted approach reveals a wide arsenal of type Illâ€secreted effectors in the cucurbit pathogenic bacterium <i>Acidovorax citrulli</i> and novel effectors in the <i>Acidovorax</i> genus. Molecular Plant Pathology, 2020, 21, 17-37.	4.2	42
65	Evolution of the Metazoan Protein Phosphatase 2C Superfamily. Journal of Molecular Evolution, 2007, 64, 61-70.	1.8	38
66	Phosphatidylserine Increases IKBKAP Levels in Familial Dysautonomia Cells. PLoS ONE, 2010, 5, e15884.	2.5	38
67	Novel Type III Effectors in Pseudomonas aeruginosa. MBio, 2015, 6, e00161.	4.1	37
68	An Evolutionary Analysis of Lateral Gene Transfer in Thymidylate Synthase Enzymes. Systematic Biology, 2010, 59, 212-225.	5.6	36
69	Uncovering the co-evolutionary network among prokaryotic genes. Bioinformatics, 2012, 28, i389-i394.	4.1	36
70	Assessing the prediction fidelity of ancestral reconstruction by a library approach. Protein Engineering, Design and Selection, 2015, 28, 507-518.	2.1	35
71	Site-Specific Evolutionary Rate Inference: Taking Phylogenetic Uncertainty into Account. Journal of Molecular Evolution, 2005, 60, 345-353.	1.8	34
72	An Integrated Model of Phenotypic Trait Changes and Site-Specific Sequence Evolution. Systematic Biology, 2017, 66, 917-933.	5.6	34

#	Article	IF	CITATIONS
73	HENA, heterogeneous network-based data set for Alzheimer's disease. Scientific Data, 2019, 6, 151.	5.3	34
74	<scp>COVID</scp> â€19 pandemicâ€related lockdown: response time is more important than its strictness. EMBO Molecular Medicine, 2020, 12, e13171.	6.9	31
75	Evolutionary Modeling of Rate Shifts Reveals Specificity Determinants in HIV-1 Subtypes. PLoS Computational Biology, 2008, 4, e1000214.	3.2	30
76	CoPAP: Coevolution of Presence–Absence Patterns. Nucleic Acids Research, 2013, 41, W232-W237.	14.5	30
77	Phage display peptide libraries: deviations from randomness and correctives. Nucleic Acids Research, 2018, 46, e52-e52.	14.5	30
78	ModelTeller: Model Selection for Optimal Phylogenetic Reconstruction Using Machine Learning. Molecular Biology and Evolution, 2020, 37, 3338-3352.	8.9	30
79	Native homing endonucleases can target conserved genes in humans and in animal models. Nucleic Acids Research, 2011, 39, 6646-6659.	14.5	27
80	Indel Reliability in Indel-Based Phylogenetic Inference. Genome Biology and Evolution, 2014, 6, 3199-3209.	2.5	26
81	A Machine Learning Approach To Identify Hydrogenosomal Proteins in Trichomonas vaginalis. Eukaryotic Cell, 2012, 11, 217-228.	3.4	24
82	Synonymous site conservation in the HIV-1 genome. BMC Evolutionary Biology, 2013, 13, 164.	3.2	24
83	Multiple Sequence Alignment Averaging Improves Phylogeny Reconstruction. Systematic Biology, 2019, 68, 117-130.	5.6	24
84	Revealing bacterial targets of growth inhibitors encoded by bacteriophage T7. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18715-18720.	7.1	23
85	Alignment Errors Strongly Impact Likelihood-Based Tests for Comparing Topologies. Molecular Biology and Evolution, 2014, 31, 3057-3067.	8.9	23
86	Revealing the inventory of type III effectors in <i>Pantoea agglomerans</i> gallâ€forming pathovars using draft genome sequences and a machineâ€learning approach. Molecular Plant Pathology, 2018, 19, 381-392.	4.2	23
87	Interleukin-6 and Interferon-α Signaling via JAK1–STAT Differentially Regulate Oncolytic versus Cytoprotective Antiviral States. Frontiers in Immunology, 2018, 9, 94.	4.8	22
88	An Evolutionary Space-Time Model with Varying Among-Site Dependencies. Molecular Biology and Evolution, 2006, 23, 392-400.	8.9	20
89	Harnessing machine learning to guide phylogenetic-tree search algorithms. Nature Communications, 2021, 12, 1983.	12.8	20
90	Insights from the Genome Sequence of Acidovorax citrulli M6, a Group I Strain of the Causal Agent of Bacterial Fruit Blotch of Cucurbits. Frontiers in Microbiology, 2016, 7, 430.	3.5	19

#	Article	IF	CITATIONS
91	The Prevalence and Evolutionary Conservation of Inverted Repeats in Proteobacteria. Genome Biology and Evolution, 2018, 10, 918-927.	2.5	19
92	A Probabilistic Model for Indel Evolution: Differentiating Insertions from Deletions. Molecular Biology and Evolution, 2021, 38, 5769-5781.	8.9	19
93	Effectidor: an automated machine-learning-based web server for the prediction of type-III secretion system effectors. Bioinformatics, 2022, 38, 2341-2343.	4.1	19
94	Sequence analysis of malacoherpesvirus proteins: Pan-herpesvirus capsid module and replication enzymes with an ancient connection to "Megavirales― Virology, 2018, 513, 114-128.	2.4	18
95	Harnessing Machine Learning To Unravel Protein Degradation in Escherichia coli. MSystems, 2021, 6, .	3.8	18
96	Detecting excess radical replacements in phylogenetic trees. Gene, 2003, 319, 127-135.	2.2	17
97	Regulation of alternative splicing at the singleâ€cell level. Molecular Systems Biology, 2015, 11, 845.	7.2	17
98	The Cytoskeleton of Parabasalian Parasites Comprises Proteins that Share Properties Common to Intermediate Filament Proteins. Protist, 2016, 167, 526-543.	1.5	17
99	ASAP - A Webserver for Immunoglobulin-Sequencing Analysis Pipeline. Frontiers in Immunology, 2018, 9, 1686.	4.8	17
100	Ancestral sequence reconstruction: accounting for structural information by averaging over replacement matrices. Bioinformatics, 2019, 35, 2562-2568.	4.1	14
101	Independent Evolution of Strychnine Recognition by Bitter Taste Receptor Subtypes. Frontiers in Molecular Biosciences, 2018, 5, 9.	3.5	12
102	PASA: Proteomic analysis of serum antibodies web server. PLoS Computational Biology, 2021, 17, e1008607.	3.2	12
103	A structural EM algorithm for phylogenetic inference. , 2001, , .		11
104	Emergence of an <scp>HIV</scp> â€1 cluster harbouring the major protease <scp>L90M</scp> mutation among treatmentâ€naÃīve patients in <scp>T</scp> el <scp>A</scp> viv, <scp>I</scp> srael. HIV Medicine, 2012, 13, 202-206.	2.2	10
105	Evolution of the U.S. Biological Select Agent Rathayibacter toxicus. MBio, 2018, 9, .	4.1	10
106	Paths of lateral gene transfer of lysyl-aminoacyl-tRNA synthetases with a unique evolutionary transition stage of prokaryotes coding for class I and II varieties by the same organisms. BMC Evolutionary Biology, 2006, 6, 22.	3.2	8
107	Phylogeny reconstruction: increasing the accuracy of pairwise distance estimation using Bayesian inference of evolutionary rates. Bioinformatics, 2007, 23, e136-e141.	4.1	8
108	TraitRateProp: a web server for the detection of trait-dependent evolutionary rate shifts in sequence sites. Nucleic Acids Research, 2017, 45, W260-W264.	14.5	8

#	Article	IF	CITATIONS
109	A phage mechanism for selective nicking of dUMP-containing DNA. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
110	Inferring Rates and Length-Distributions of Indels Using Approximate Bayesian Computation. Genome Biology and Evolution, 2017, 9, 1280-1294.	2.5	7
111	A Simulation-Based Approach to Statistical Alignment. Systematic Biology, 2019, 68, 252-266.	5.6	7
112	Motifier: An IgOme Profiler Based on Peptide Motifs Using Machine Learning. Journal of Molecular Biology, 2021, 433, 167071.	4.2	7
113	The Operonic Location of Auto-transcriptional Repressors Is Highly Conserved in Bacteria. Molecular Biology and Evolution, 2011, 28, 3309-3318.	8.9	6
114	Inferring Indel Parameters using a Simulation-based Approach. Genome Biology and Evolution, 2015, 7, 3226-3238.	2.5	6
115	Probabilistic models and their impact on the accuracy of reconstructed ancestral protein sequences. , 2007, , 43-57.		6
116	Detection and analysis of conservation at synonymous sites. , 2012, , 218-228.		6
117	SpartaABC: a web server to simulate sequences with indel parameters inferred using an approximate Bayesian computation algorithm. Nucleic Acids Research, 2017, 45, W453-W457.	14.5	5
118	Phylogenetic Distribution and Evolution of Type VI Secretion System in the Genus Xanthomonas. Frontiers in Microbiology, 2022, 13, 840308.	3.5	5
119	Fast computation of maximum likelihood trees by numerical approximation of amino acid replacement probabilities. Computational Statistics and Data Analysis, 2002, 40, 285-291.	1.2	4
120	Machine-learning of complex evolutionary signals improves classification of SNVs. NAR Genomics and Bioinformatics, 2022, 4, lqac025.	3.2	4
121	EvoRator: Prediction of Residue-level Evolutionary Rates from Protein Structures Using Machine Learning. Journal of Molecular Biology, 2022, 434, 167538.	4.2	4
122	Transduplication resulted in the incorporation of two protein-coding sequences into the Turmoil-1 transposable element of C. elegans. Biology Direct, 2008, 3, 41.	4.6	3
123	Domain-Scan: Combinatorial Sero-Diagnosis of Infectious Diseases Using Machine Learning. Frontiers in Immunology, 2020, 11, 619896.	4.8	3
124	A Chemical-Distance-Based Test for Positive Darwinian Selection. Lecture Notes in Computer Science, 2001, , 142-155.	1.3	2
125	The Complexity Hypothesis and Other Connectivity Barriers to Lateral Gene Transfer. , 2013, , 137-145.		2
126	Evolution after gene duplication. Trends in Evolutionary Biology, 2011, 3, 1.	0.4	1

	IAL PUPK	IPKO		
#	Article	IF	CITATIONS	
127	A LASSO-based approach to sample sites for phylogenetic tree search. Bioinformatics, 2022, 38, i118-i124.	4.1	1	