Monica Nizzardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/213713/publications.pdf

Version: 2024-02-01

136950 155660 3,224 63 32 55 h-index citations g-index papers 63 63 63 4973 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genetic Correction of Human Induced Pluripotent Stem Cells from Patients with Spinal Muscular Atrophy. Science Translational Medicine, 2012, 4, 165ra162.	12.4	180
2	Therapeutic applications of the cell-penetrating HIV-1 Tat peptide. Drug Discovery Today, 2015, 20, 76-85.	6.4	173
3	Direct reprogramming of human astrocytes into neural stem cells and neurons. Experimental Cell Research, 2012, 318, 1528-1541.	2.6	143
4	Neural stem cells LewisX + CXCR4 + modify disease progression in an amyotrophic lateral sclerosis model. Brain, 2007, 130, 1289-1305.	7.6	127
5	The Mitochondrial Disulfide Relay System Protein GFER Is Mutated in Autosomal-Recessive Myopathy with Cataract and Combined Respiratory-Chain Deficiency. American Journal of Human Genetics, 2009, 84, 594-604.	6.2	121
6	Neural stem cell transplantation can ameliorate the phenotype of a mouse model of spinal muscular atrophy. Journal of Clinical Investigation, 2008, 118, 3316-3330.	8.2	119
7	Spinal muscular atrophy—recent therapeutic advances for an old challenge. Nature Reviews Neurology, 2015, 11, 351-359.	10.1	119
8	Resveratrol-induced apoptosis in human T-cell acute lymphoblastic leukaemia MOLT-4 cells. Biochemical Pharmacology, 2007, 74, 1568-1574.	4.4	117
9	MFN2-related neuropathies: Clinical features, molecular pathogenesis and therapeutic perspectives. Journal of the Neurological Sciences, 2015, 356, 7-18.	0.6	112
10	Neural Stem Cell Transplantation for Neurodegenerative Diseases. International Journal of Molecular Sciences, 2020, 21, 3103.	4.1	105
11	Isolation and characterization of murine neural stem/progenitor cells based on Prominin-1 expression. Experimental Neurology, 2007, 205, 547-562.	4.1	104
12	Embryonic stem cell-derived neural stem cells improve spinal muscular atrophy phenotype in mice. Brain, 2010, 133, 465-481.	7.6	98
13	Minimally invasive transplantation of iPSC-derived ALDHhiSSCloVLA4+ neural stem cells effectively improves the phenotype of an amyotrophic lateral sclerosis model. Human Molecular Genetics, 2014, 23, 342-354.	2.9	97
14	Cellular therapy to target neuroinflammation in amyotrophic lateral sclerosis. Cellular and Molecular Life Sciences, 2014, 71, 999-1015.	5.4	89
15	Differential neuronal vulnerability identifies IGF-2 as a protective factor in ALS. Scientific Reports, 2016, 6, 25960.	3.3	80
16	Molecular Therapeutic Strategies for Spinal Muscular Atrophies: Current and Future Clinical Trials. Clinical Therapeutics, 2014, 36, 128-140.	2.5	74
17	Human motor neuron generation from embryonic stem cells and induced pluripotent stem cells. Cellular and Molecular Life Sciences, 2010, 67, 3837-3847.	5.4	71
18	Therapeutic Development in Amyotrophic Lateral Sclerosis. Clinical Therapeutics, 2015, 37, 668-680.	2.5	71

#	Article	IF	Citations
19	Systemic transplantation of c-kit+ cells exerts a therapeutic effect in a model of amyotrophic lateral sclerosis. Human Molecular Genetics, 2010, 19, 3782-3796.	2.9	66
20	Motor neurons with differential vulnerability to degeneration show distinct protein signatures in health and ALS. Neuroscience, 2015, 291, 216-229.	2.3	62
21	MicroRNA expression analysis identifies a subset of downregulated miRNAs in ALS motor neuron progenitors. Scientific Reports, 2018, 8, 10105.	3.3	53
22	Motor neuron derivation from human embryonic and induced pluripotent stem cells: experimental approaches and clinical perspectives. Stem Cell Research and Therapy, 2014, 5, 87.	5.5	52
23	Beta-lactam antibiotic offers neuroprotection in a spinal muscular atrophy model by multiple mechanisms. Experimental Neurology, 2011, 229, 214-225.	4.1	51
24	Antisense Oligonucleotide Therapy for the Treatment of C9ORF72 ALS/FTD Diseases. Molecular Neurobiology, 2014, 50, 721-732.	4.0	48
25	Fas small interfering RNA reduces motoneuron death in amyotrophic lateral sclerosis mice. Annals of Neurology, 2007, 62, 81-92.	5.3	47
26	Mitochondrial Dysregulation and Impaired Autophagy in iPSC-Derived Dopaminergic Neurons of Multiple System Atrophy. Stem Cell Reports, 2018, 11, 1185-1198.	4.8	46
27	Effect of Combined Systemic and Local Morpholino Treatment on the Spinal Muscular Atrophy î"7 Mouse Model Phenotype. Clinical Therapeutics, 2014, 36, 340-356.e5.	2.5	44
28	Selective mitochondrial depletion, apoptosis resistance, and increased mitophagy in human Charcot-Marie-Tooth 2A motor neurons. Human Molecular Genetics, 2016, 25, 4266-4281.	2.9	41
29	In vitro neurogenesis: development and functional implications of iPSC technology. Cellular and Molecular Life Sciences, 2014, 71, 1623-1639.	5.4	39
30	Spinal muscular atrophy phenotype is ameliorated in human motor neurons by SMN increase via different novel RNA therapeutic approaches. Scientific Reports, 2015, 5, 11746.	3.3	37
31	Motoneuron Transplantation Rescues the Phenotype of SMARD1 (Spinal Muscular Atrophy with) Tj ETQq1 1 0.78	4314 rgBT 3.6	/ <mark>O</mark> verlock
32	iPSC-Derived Neural Stem Cells Act via Kinase Inhibition to Exert Neuroprotective Effects in Spinal Muscular Atrophy with Respiratory DistressÂType 1. Stem Cell Reports, 2014, 3, 297-311.	4.8	34
33	Gene therapy rescues disease phenotype in a spinal muscular atrophy with respiratory distress type 1 (SMARD1) mouse model. Science Advances, 2015, 1, e1500078.	10.3	33
34	Stem cell transplantation for amyotrophic lateral sclerosis: therapeutic potential and perspectives on clinical translation. Cellular and Molecular Life Sciences, 2014, 71, 3257-3268.	5.4	32
35	Riboflavin transporter 3 involvement in infantile Brown-Vialetto-Van Laere disease: two novel mutations. Journal of Medical Genetics, 2013, 50, 104-107.	3.2	31
36	Key role of SMN/SYNCRIP and RNA-Motif 7 in spinal muscular atrophy: RNA-Seq and motif analysis of human motor neurons. Brain, 2019, 142, 276-294.	7.6	31

#	Article	IF	Citations
37	miR-129-5p: A key factor and therapeutic target in amyotrophic lateral sclerosis. Progress in Neurobiology, 2020, 190, 101803.	5 . 7	31
38	The wide spectrum of clinical phenotypes of spinal muscular atrophy with respiratory distress type 1: A systematic review. Journal of the Neurological Sciences, 2014, 346, 35-42.	0.6	30
39	Glycogen storage disease type III: A novel Agl knockout mouse model. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 2318-2328.	3.8	28
40	Pluripotent stem cell-based models of spinal muscular atrophy. Molecular and Cellular Neurosciences, 2015, 64, 44-50.	2.2	28
41	Systematic elucidation of neuron-astrocyte interaction in models of amyotrophic lateral sclerosis using multi-modal integrated bioinformatics workflow. Nature Communications, 2020, 11, 5579.	12.8	28
42	iPSC-derived LewisX+CXCR4+ \hat{l}^21 -integrin+ neural stem cells improve the amyotrophic lateral sclerosis phenotype by preserving motor neurons and muscle innervation in human and rodent models. Human Molecular Genetics, 2016, 25, 3152-3163.	2.9	27
43	ALS genetic modifiers that increase survival of SOD1 mice and are suitable for therapeutic development. Progress in Neurobiology, 2011, 95, 133-148.	5.7	26
44	Genome-wide RNA-seq of iPSC-derived motor neurons indicates selective cytoskeletal perturbation in Brown–Vialetto disease that is partially rescued by riboflavin. Scientific Reports, 2017, 7, 46271.	3.3	22
45	Spinal muscular atrophy with respiratory distress type 1: Clinical phenotypes, molecular pathogenesis and therapeutic insights. Journal of Cellular and Molecular Medicine, 2020, 24, 1169-1178.	3.6	21
46	Direct Reprogramming of Adult Somatic Cells into other Lineages: Past Evidence and Future Perspectives. Cell Transplantation, 2013, 22, 921-944.	2.5	20
47	Molecular, genetic and stem cellâ€mediated therapeutic strategies for spinal muscular atrophy (<scp>SMA</scp>). Journal of Cellular and Molecular Medicine, 2014, 18, 187-196.	3.6	20
48	TDP-43 promotes the formation of neuromuscular synapses through the regulation of Disc-large expression in Drosophila skeletal muscles. BMC Biology, 2020, 18, 34.	3.8	20
49	Research advances in gene therapy approaches for the treatment of amyotrophic lateral sclerosis. Cellular and Molecular Life Sciences, 2012, 69, 1641-1650.	5.4	19
50	Downregulation of glutamic acid decarboxylase in Drosophila TDP-43-null brains provokes paralysis by affecting the organization of the neuromuscular synapses. Scientific Reports, 2018, 8, 1809.	3.3	17
51	Dysregulation of Muscle-Specific MicroRNAs as Common Pathogenic Feature Associated with Muscle Atrophy in ALS, SMA and SBMA: Evidence from Animal Models and Human Patients. International Journal of Molecular Sciences, 2021, 22, 5673.	4.1	14
52	Cell-penetrating peptide-conjugated Morpholino rescues SMA in a symptomatic preclinical model. Molecular Therapy, 2022, 30, 1288-1299.	8.2	12
53	Insights into the identification of a molecular signature for amyotrophic lateral sclerosis exploiting integrated microRNA profiling of iPSC-derived motor neurons and exosomes. Cellular and Molecular Life Sciences, 2022, 79, 189.	5.4	12
54	Experimental Advances Towards Neural Regeneration from Induced Stem Cells to Direct In Vivo Reprogramming. Molecular Neurobiology, 2016, 53, 2124-2131.	4.0	11

#	Article	IF	CITATION
55	Current understanding of and emerging treatment options for spinal muscular atrophy with respiratory distress type 1 (SMARD1). Cellular and Molecular Life Sciences, 2020, 77, 3351-3367.	5.4	11
56	Stathmins and Motor Neuron Diseases: Pathophysiology and Therapeutic Targets. Biomedicines, 2022, 10, 711.	3.2	9
57	Investigation of New Morpholino Oligomers to Increase Survival Motor Neuron Protein Levels in Spinal Muscular Atrophy. International Journal of Molecular Sciences, 2018, 19, 167.	4.1	8
58	CSF transplantation of a specific iPSC-derived neural stem cell subpopulation ameliorates the disease phenotype in a mouse model of spinal muscular atrophy with respiratory distress type 1. Experimental Neurology, 2019, 321, 113041.	4.1	8
59	iPSC-Based Models to Unravel Key Pathogenetic Processes Underlying Motor Neuron Disease Development. Journal of Clinical Medicine, 2014, 3, 1124-1145.	2.4	6
60	Animal Models of CMT2A: State-of-art and Therapeutic Implications. Molecular Neurobiology, 2020, 57, 5121-5129.	4.0	6
61	Targeting PTB for Glia-to-Neuron Reprogramming In Vitro and In Vivo for Therapeutic Development in Neurological Diseases. Biomedicines, 2022, 10, 399.	3.2	6
62	Molecular analysis of SMARD1 patient-derived cells demonstrates that nonsense-mediated mRNA decay is impaired. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 908-910.	1.9	3
63	Generation of two hiPSC lines (UMILi027-A and UMILi028-A) from early and late-onset Congenital Central hypoventilation Syndrome (CCHS) patients carrying a polyalanine expansion mutation in the PHOX2B gene. Stem Cell Research, 2022, 61, 102781.	0.7	0