Thierry Dutoit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2136974/publications.pdf

Version: 2024-02-01

117625 197818 3,156 112 34 49 citations g-index h-index papers 125 125 125 2982 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Restoration and Rehabilitation of Speciesâ€Rich Grassland Ecosystems in France: a Review. Restoration Ecology, 1998, 6, 94-101.	2.9	134
2	Plant root traits affecting the resistance of soils to concentrated flow erosion. Earth Surface Processes and Landforms, 2012, 37, 1463-1470.	2.5	134
3	Influence of former cultivation on the unique Mediterranean steppe of France and consequences for conservation management. Biological Conservation, 2005, 121, 21-33.	4.1	95
4	Adapting green roof irrigation practices for a sustainable future: A review. Sustainable Cities and Society, 2015, 19, 74-90.	10.4	90
5	Germination traits explain soil seed persistence across species: the case of Mediterranean annual plants in cereal fields. Annals of Botany, 2011, 107, 415-426.	2.9	88
6	Gardens in urbanizing rural areas reveal an unexpected floral diversity related to housing density. Comptes Rendus - Biologies, 2008, 331, 452-465.	0.2	81
7	The implications of seed rain and seed bank patterns for plant succession at the edges of abandoned fields in Mediterranean landscapes. Agriculture, Ecosystems and Environment, 2006, 115, 6-14.	5. 3	78
8	Title is missing!. Biodiversity and Conservation, 2001, 10, 119-135.	2.6	75
9	The seed bank longevity index revisited: limited reliability evident from a burial experiment and database analyses. Annals of Botany, 2009, 104, 715-724.	2.9	75
10	The age and history of the French Mediterranean steppe revisited by soil wood charcoal analysis. Holocene, 2010, 20, 25-34.	1.7	69
11	From the backyard to the backcountry: how ecological and biological traits explain the escape of garden plants into Mediterranean old fields. Biological Invasions, 2010, 12, 761-779.	2.4	65
12	Plant functional traits and species ability for sediment retention during concentrated flow erosion. Plant and Soil, 2012, 353, 135-144.	3.7	61
13	Permanent seed banks in chalk grassland under various management regimes: their role in the restoration of species-rich plant communities. Biodiversity and Conservation, 1995, 4, 939-950.	2.6	59
14	Plant trait analysis delivers an extensive list of potential green roof species for Mediterranean France. Ecological Engineering, 2014, 67, 48-59.	3.6	59
15	Linking plant morphological traits to uprooting resistance in eroded marly lands (Southern Alps,) Tj ETQq1 1 0.784	1314 rgBT	/Overlock 1
16	Mediterranean open habitat vegetation offers great potential for extensive green roof design. Landscape and Urban Planning, 2014, 121, 81-91.	7.5	57
17	Selection of native plants with phytoremediation potential for highly contaminated Mediterranean soil restoration: Tools for a non-destructive and integrative approach. Journal of Environmental Management, 2016, 183, 850-863.	7.8	57
18	Creation of the natural reserve of La Crau: Implications for the creation and management of protected areas. Journal of Environmental Management, 2006, 80, 318-326.	7.8	56

#	Article	IF	CITATIONS
19	Species introduction $\hat{a} \in \hat{a}$ a major topic in vegetation restoration. Applied Vegetation Science, 2012, 15, 161-165.	1.9	56
20	Patterns of secondary succession in calcareous grasslands: can we distinguish the influence of former land uses from present vegetation data?. Basic and Applied Ecology, 2005, 6, 161-173.	2.7	49
21	New synthetic indicators to assess community resilience and restoration success. Ecological Indicators, 2013, 29, 468-477.	6.3	49
22	Environmental impact assessment of development projects improved by merging species distribution and habitat connectivity modelling. Journal of Environmental Management, 2019, 241, 439-449.	7.8	48
23	Species Traits as Practical Tools for Ecological Restoration of Marly Eroded Lands. Restoration Ecology, 2014, 22, 633-640.	2.9	45
24	Functional diversity as a framework for novel ecosystem design: The example of extensive green roofs. Landscape and Urban Planning, 2015, 136, 165-173.	7.5	44
25	Integrating a landscape connectivity approach into mitigation hierarchy planning by anticipating urban dynamics. Landscape and Urban Planning, 2020, 202, 103871.	7.5	44
26	Discrimination between agricultural management and the hedge effect in pear orchards (south-eastern France). Annals of Applied Biology, 2006, 149, 347-355.	2.5	42
27	The status of transitions between cultivated fields and their boundaries: ecotones, ecoclines or edge effects?. Acta Oecologica, 2007, 31, 127-136.	1.1	42
28	Effect of Seed Source, Topsoil Removal, and Plant Neighbor Removal on Restoring California Coastal Prairies. Restoration Ecology, 2006, 14, 569-577.	2.9	41
29	Sampling soil wood charcoals at a high spatial resolution: a new methodology to investigate the origin of grassland plant communities. Journal of Vegetation Science, 2009, 20, 349-358.	2.2	40
30	Factors influencing soil macrofaunal communities in post-pastoral successions of western France. Applied Soil Ecology, 1998, 9, 361-367.	4.3	39
31	Are old Mediterranean grasslands resilient to human disturbances?. Acta Oecologica, 2012, 43, 86-94.	1.1	38
32	Can ecological engineering restore Mediterranean rangeland after intensive cultivation? A large-scale experiment in southern France. Ecological Engineering, 2014, 64, 202-212.	3.6	38
33	Plant Functional Traits Show Non-Linear Response to Grazing. Folia Geobotanica, 2010, 45, 239-252.	0.9	37
34	Colonisation by native species of abandoned farmland adjacent to a remnant patch of Mediterranean steppe. Plant Ecology, 2004, 174, 371-384.	1.6	36
35	Hay Transfer Promotes Establishment of Mediterranean Steppe Vegetation on Soil Disturbed by Pipeline Construction. Restoration Ecology, 2011, 19, 214-222.	2.9	35
36	Vegetation development on different extensive green roof types in a Mediterranean and temperate maritime climate. Ecological Engineering, 2015, 82, 571-582.	3.6	34

#	Article	IF	Citations
37	Bridging Human and Natural Sciences for a Better Understanding of Urban Floral Patterns: the Role of Planting Practices in Mediterranean Gardens. Ecology and Society, 2010, 15, .	2.3	32
38	Maximizing habitat connectivity in the mitigation hierarchy. A case study on three terrestrial mammals in an urban environment. Journal of Environmental Management, 2019, 243, 340-349.	7.8	31
39	Reintroduction ofNassella pulchrato California coastal grasslands: Effects of topsoil removal, plant neighbour removal and grazing. Applied Vegetation Science, 2008, 11, 195-204.	1.9	30
40	Ecological restoration by soil transfer: impacts on restored soil profiles and topsoil functions. Restoration Ecology, 2017, 25, 354-366.	2.9	30
41	Harvester ants as ecological engineers for Mediterranean grassland restoration: Impacts on soil and vegetation. Biological Conservation, 2020, 245, 108547.	4.1	30
42	Land use history and botanical changes in the calcareous hillsides of Upper-Normandy (north-western France): new implications for their conservation management. Biological Conservation, 2004, 115 , $1-19$.	4.1	29
43	Respective influence of habitat conditions and management regimes on prealpine calcareous grasslands. Journal of Environmental Management, 2004, 72, 261-275.	7.8	27
44	Topsoil removal improves various restoration treatments of a <scp>M</scp> editerranean steppe (<scp>L</scp> a <scp>C</scp> rau, southeast <scp>F</scp> rance). Applied Vegetation Science, 2014, 17, 236-245.	1.9	26
45	A comparison of different soil transfer strategies for restoring a Mediterranean steppe after a pipeline leak (La Crau plain, South-Eastern France). Ecological Engineering, 2014, 71, 690-702.	3.6	25
46	Vegetation and soil seed bank in a 23-year grazing exclusion chronosequence in a Mediterranean dry grassland. Plant Biosystems, 2018, 152, 1020-1030.	1.6	25
47	A functional method for classifying European grasslands for use in joint ecological and economic studies. Basic and Applied Ecology, 2005, 6, 119-131.	2.7	24
48	Recovery of Mediterranean steppe vegetation after cultivation: Legacy effects on plant composition, soil properties and functional traits. Applied Vegetation Science, 2019, 22, 71-84.	1.9	24
49	Pooling biodiversity offsets to improve habitat connectivity and species conservation. Journal of Environmental Management, 2021, 277, 111425.	7.8	23
50	Using a twoâ€phase sowing approach in restoration: sowing foundation species to restore, and subordinate species to evaluate restoration success. Applied Vegetation Science, 2012, 15, 277-289.	1.9	22
51	Long-term effects of topsoil transfer assessed thirty years after rehabilitation of dry alluvial quarries in Southeastern France. Ecological Engineering, 2017, 99, 1-12.	3.6	22
52	Key issues in Northwestern Mediterranean dry grassland restoration. Restoration Ecology, 2021, 29, e13258.	2.9	22
53	First-year results of a multi-treatment steppe restoration experiment in La Crau (Provence, France). Plant Ecology and Evolution, 2012, 145, 13-23.	0.7	21
54	Vegetation, soils and seed banks of limestone grasslands are still impacted by former cultivation one century after abandonment. Community Ecology, 2012, 13, 194-202.	0.9	21

#	Article	IF	Citations
55	Using stone cover patches and grazing exclusion to restore ground-active beetle communities in a degraded pseudo-steppe. Journal of Insect Conservation, 2011, 15, 561-572.	1.4	20
56	Conceptual and methodological issues in estimating the success of ecological restoration. Ecological Indicators, 2021, 123, 107362.	6.3	20
57	Consequences of the cessation of 3000 years of grazing on dry Mediterranean grassland ground-active beetle assemblages. Comptes Rendus - Biologies, 2008, 331, 532-546.	0.2	19
58	Substrate Composition and Depth Affect Soil Moisture Behavior and Plant-Soil Relationship on Mediterranean Extensive Green Roofs. Water (Switzerland), 2017, 9, 817.	2.7	19
59	Species transfer via topsoil translocation: lessons from two large Mediterranean restoration projects. Restoration Ecology, 2018, 26, S179.	2.9	19
60	Fire increases the reproduction of the dominant grass <i>Brachypodium retusum</i> and Mediterranean steppe diversity in a combined burning and grazing experiment. Applied Vegetation Science, 2019, 22, 127-137.	1.9	19
61	Orthoptera prove good indicators of grassland rehabilitation success in the first French Natural Asset Reserve. Journal for Nature Conservation, 2018, 44, 1-11.	1.8	18
62	Short-Term Effects on Diversity and Biomass on Grasslands from Artificial Dykes under Grazing and Mowing Treatments. Environmental Conservation, 2019, 46, 132-139.	1.3	18
63	Dynamique de la biodiversité dans un espace en mutation. Le cas des pelouses calcicoles de la basse vallée de Seine. Acta Oecologica, 1998, 19, 275-284.	1.1	16
64	Limiting processes for perennial plant reintroduction to restore dry grasslands. Restoration Ecology, 2015, 23, 947-954.	2.9	16
65	Agroecological engineering. Agronomy for Sustainable Development, 2015, 35, 1191-1198.	5.3	16
66	Above- and below-ground effects of an ecosystem engineer ant in Mediterranean dry grasslands. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201840.	2.6	16
67	Dynamique d'une communauté d'adventices dans un champ de céréales créé après le labour prairie semi-naturelle : rÃ1es de la banque de graines permanente. Ecoscience, 2003, 10, 225-235.	d'une 1.4	15
68	Fostering the use of soil invertebrate traits to restore ecosystem functioning. Geoderma, 2022, 424, 116019.	5.1	15
69	Spatial distribution of an arthropod community in a pear orchard (southern France). Agriculture, Ecosystems and Environment, 2008, 127, 166-176.	5.3	14
70	Impact of quarry exploitation and disuse on pedogenesis. Catena, 2018, 160, 354-365.	5.0	14
71	Field boundary effects on soil seed banks and weed vegetation distribution in an arable field without weed control (Vaucluse, France). Agronomy for Sustainable Development, 1999, 19, 579-590.	0.8	14
72	Réponses fonctionnelles des communautés de pelouses calcicoles aux facteurs agro-écologiques dans les Préalpes françaises. Canadian Journal of Botany, 2000, 78, 1010-1020.	1.1	13

#	Article	IF	Citations
73	A comparative review of soil charcoal data: Spatiotemporal patterns of origin and long-term dynamics of Western European nutrient-poor grasslands. Holocene, 2018, 28, 1313-1324.	1.7	12
74	Using Different Grazing Practices for Increasing Plant Biodiversity in the Dykes and Embankments Along the RhÃ'ne River (Southern France). Environmental Management, 2016, 58, 984-997.	2.7	11
75	Using Shrub Clearing, Draining, and Herbivory to Control Bramble Invasion in Mediterranean Dry Grasslands. Environmental Management, 2015, 56, 933-945.	2.7	10
76	Ecosystem services in conventional farming systems. A review. Agronomy for Sustainable Development, 2022, 42, 1.	5.3	10
77	Past cultivation is a factor driving organization of dry grassland ground-active beetle communities. Environmental Conservation, 2007, 34, 132-139.	1.3	9
78	Responses of five woody species to burial by marly sediment: the role of biomass allocation pattern flexibility. Journal of Plant Ecology, 2012, 5, 287-293.	2.3	9
79	Effects of ecological restoration on Orthoptera assemblages in a Mediterranean steppe rangeland. Journal of Insect Conservation, 2014, 18, 1073-1085.	1.4	9
80	Adaptive differentiation among populations of the Mediterranean dry grassland species <i>Brachypodium retusum</i> : The role of soil conditions, grazing, and humidity. American Journal of Botany, 2018, 105, 1123-1132.	1.7	9
81	Extensive horse grazing improves grassland vegetation diversity, seed bank and forage quality of artificial embankments (RhÃ'ne River - southern France). Journal for Nature Conservation, 2020, 56, 125865.	1.8	9
82	Romans Shape Today's Vegetation and Soils: Two Millennia of Land-Use Legacy Dynamics in Mediterranean Grasslands. Ecosystems, 2021, 24, 1268-1280.	3.4	9
83	Rabbits are more effective than cattle for limiting shrub colonization in Mediterranean xero-halophytic meadows. Ecoscience, 2011, 18, 37-41.	1.4	7
84	Biodiversité actuelle et potentielle des écosystèmes prairiaux calcicoles: influence de la gestion sur les phytocénoses et les banques de graines. Acta Botanica Gallica, 1996, 143, 431-440.	0.9	6
85	Successional changes and diversity of soil macrofaunal communities on chalk grasslands in Upper-Normandy (France). Acta Oecologica, 1997, 18, 135-149.	1.1	6
86	Réponses fonctionnelles des communautés de pelouses calcicoles aux facteurs agro-écologiques dans les Préalpes françaises. Canadian Journal of Botany, 2000, 78, 1010-1020.	1.1	6
87	Conservation of grassland patches failed to enhance colonization of ground-active beetles on formerly cultivated plots. Environmental Conservation, 2008, 35, 109-116.	1.3	6
88	Effects of ecological restoration on beetle assemblages: results from a large-scale experiment in a Mediterranean steppe rangeland. Biodiversity and Conservation, 2018, 27, 2155-2172.	2.6	6
89	Factors limiting early establishment of the Mediterranean grassland species Brachypodium retusum at disturbed sites. Basic and Applied Ecology, 2019, 37, 10-19.	2.7	6
90	Teneurs en min \tilde{A} ©raux des fourrages de chaume et de leurs adventices : l'exemple d'une exploitation agricole du sud-est de la France (Vaucluse). Animal Research, 2001, 50, 495-505.	0.6	5

#	Article	IF	CITATIONS
91	Dossier : La fabrique de la compensation écologique : controverses et pratiques – Une définition opérationnelle de la nature ordinaire adaptée à la compensation écologique. Le cas contrasté des régions Centre, Champagne-Ardenne et Paca. Natures Sciences Societes, 2018, 26, 170-188.	0.4	5
92	Transférer le sol pour restaurer des communautés végétales: quelles leçons pour mesurer la résilience des pelouses sÃ"ches ? (Plaine de La Crau, Sud-Est de la France) Acta Botanica Gallica, 2014, 161, 287-300.	0.9	4
93	Impacts of water stress removal and disturbance regimes on Mediterranean dry grasslands diversity and succession. Plant Ecology, 2015, 216, 1351-1369.	1.6	4
94	Recovery of arbuscular mycorrhizal fungi root colonization after severe anthropogenic disturbance: four species assessed in old-growth Mediterranean grassland. Folia Geobotanica, 2016, 51, 319-332.	0.9	4
95	Grazing intensity gradient inherited from traditional herding still explains Mediterranean grassland characteristics despite current land-use changes. Agriculture, Ecosystems and Environment, 2022, 338, 108085.	5.3	4
96	Photoperiod buffers responses to salt and temperature during germination of two coastal salt marsh colonizers Juncus acutus and Juncus maritimus. Plant Biosystems, 2016, 150, 1156-1164.	1.6	3
97	Plant traits and population characteristics predict extinctions in a long-term survey of Mediterranean annual plants. Biodiversity and Conservation, 2018, 27, 2527-2540.	2.6	3
98	Using mechanical clearing and goat grazing for restoring understorey plant diversity of embankments in the RhA'ne valley (Southern France). Plant Biosystems, 2020, 154, 746-756.	1.6	3
99	Comparison of neutral and adaptive differentiation in the Mediterranean grass Brachypodium retusum. Botanical Journal of the Linnean Society, 2020, 192, 536-549.	1.6	3
100	Grazing and the vanishing complexity of plant association networks in grasslands. Oikos, 2021, 130, 541-552.	2.7	3
101	Using various artificial soil mixtures to restore dry grasslands in quarries. Restoration Ecology, 2022, 30, .	2.9	2
102	Impacts de différents régimes de perturbations et niveaux de ressource hydrique pour contrÃ1er une espèce proliférante dans un écosystème pseudo-steppique: le cas deRubus ulmifoliusSchott. dans la plaine de la Crau (Bouches-du-Rhône, France). Acta Botanica Gallica, 2014, 161, 261-275.	0.9	1
103	Dossier : La fabrique de la compensation écologique : controverses et pratiques – Regards d'é sur le premier site naturel de compensation français. Natures Sciences Societes, 2018, 26, 215-222.	cologues 0.4	1
104	L'écopastoralisme comme outil de gestion des digues artificiellesÂ: le cas de la réserve de chasse et de faune sauvage de Donzère-Mondragon. Sciences Eaux & Territoires, 2021, Numéro hors-série, 1c-7.	0.0	1
105	Grazing in temporary paddocks with hardy breed horses (Konik polski) improved species-rich grasslands restoration in artificial embankments of the Rhône river (Southern France). Global Ecology and Conservation, 2021, 31, e01874.	2.1	1
106	Hay transfer and sowing structuring species: Two complementary ecological engineering techniques to restore dry grassland communities. Procedia Environmental Sciences, 2011, 9, 33-39.	1.4	0
107	River ecological restoration across frontiers. Knowledge and Management of Aquatic Ecosystems, 2011, , 19.	1.1	О
108	Environmental drivers of plant diversity of chalk grasslands in north-western France. , 0, , .		0

#	Article	IF	CITATIONS
109	Améliorer la prise en compte des fonctionnalités écologiques dans la séquence Éviter-Réduire-Compenser. Sciences Eaux & Territoires, 2021, Numéro hors-série, 1a-8.	0.0	0
110	2008-2019, plus d'une décennie d'échanges et de débats autour de la restauration écologique € France. Naturae, 2021, , .	en 0.1	0
111	Quels facteurs limitent l'installation d'une graminée pérenne dominante pour la restauration écologique des pelouses sÃ"ches méditerranéennes ?. Naturae, 2021, , .	0.1	0
112	Hydroseeding for Restoring Degraded Semi-Arid Mediterranean Environments: A Review of Challenges Lebanese Science Journal, 2020, 22, 38-67.	0.0	0