Georgia Papacharalampous

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/213651/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrological Sciences Journal, 2019, 64, 1141-1158.	1.2	474
2	A Brief Review of Random Forests for Water Scientists and Practitioners and Their Recent History in Water Resources. Water (Switzerland), 2019, 11, 910.	1.2	336
3	Variable Selection in Time Series Forecasting Using Random Forests. Algorithms, 2017, 10, 114.	1.2	106
4	Predictability of monthly temperature and precipitation using automatic time series forecasting methods. Acta Geophysica, 2018, 66, 807-831.	1.0	92
5	Super ensemble learning for daily streamflow forecasting: large-scale demonstration and comparison with multiple machine learning algorithms. Neural Computing and Applications, 2021, 33, 3053-3068.	3.2	85
6	Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes. Stochastic Environmental Research and Risk Assessment, 2019, 33, 481-514.	1.9	80
7	Hydrological post-processing using stacked generalization of quantile regression algorithms: Large-scale application over CONUS. Journal of Hydrology, 2019, 577, 123957.	2.3	68
8	Evaluation of random forests and Prophet for dailyÂstreamflowÂforecasting. Advances in Geosciences, 0, 45, 201-208.	12.0	61
9	Simultaneous estimation of the parameters of the Hurst–Kolmogorov stochastic process. Stochastic Environmental Research and Risk Assessment, 2011, 25, 21-33.	1.9	53
10	Probabilistic Hydrological Post-Processing at Scale: Why and How to Apply Machine-Learning Quantile Regression Algorithms. Water (Switzerland), 2019, 11, 2126.	1.2	51
11	Univariate Time Series Forecasting of Temperature and Precipitation with a Focus on Machine Learning Algorithms: a Multiple-Case Study from Greece. Water Resources Management, 2018, 32, 5207-5239.	1.9	46
12	How to explain and predict the shape parameter of the generalized extreme value distribution of streamflow extremes using a big dataset. Journal of Hydrology, 2019, 574, 628-645.	2.3	44
13	Boosting algorithms in energy research: a systematic review. Neural Computing and Applications, 2021, 33, 14101-14117.	3.2	33
14	On the long-range dependence properties of annual precipitation using a global network of instrumental measurements. Advances in Water Resources, 2018, 111, 301-318.	1.7	31
15	A Bayesian statistical model for deriving the predictive distribution of hydroclimatic variables. Climate Dynamics, 2014, 42, 2867-2883.	1.7	28
16	One-step ahead forecasting of geophysical processes within a purely statistical framework. Geoscience Letters, 2018, 5, .	1.3	28
17	Hydrological time series forecasting using simple combinations: Big data testing and investigations on one-year ahead river flow predictability. Journal of Hydrology, 2020, 590, 125205.	2.3	27
18	Quantification of predictive uncertainty in hydrological modelling by harnessing the wisdom of the crowd: A large-sample experiment at monthly timescale. Advances in Water Resources, 2020, 136, 103470.	1.7	25

#	Article	IF	CITATIONS
19	Global-scale massive feature extraction from monthly hydroclimatic time series: Statistical characterizations, spatial patterns and hydrological similarity. Science of the Total Environment, 2021, 767, 144612.	3.9	25
20	Estimation of intensity–duration–frequency curves using max-stable processes. Stochastic Environmental Research and Risk Assessment, 2019, 33, 239-252.	1.9	20
21	Large-scale assessment of Prophet for multi-step ahead forecasting of monthly streamflow. Advances in Geosciences, 0, 45, 147-153.	12.0	20
22	On the prediction of persistent processes using the output of deterministic models. Hydrological Sciences Journal, 2017, 62, 2083-2102.	1.2	19
23	Continuous hydrologic modelling for small and ungauged basins: A comparison of eight rainfall models for sub-daily runoff simulations. Journal of Hydrology, 2022, 610, 127866.	2.3	17
24	Quantification of predictive uncertainty in hydrological modelling by harnessing the wisdom of the crowd: Methodology development and investigation using toy models. Advances in Water Resources, 2020, 136, 103471.	1.7	14
25	Quantile-Based Hydrological Modelling. Water (Switzerland), 2021, 13, 3420.	1.2	14
26	An algorithm to construct Monte Carlo confidence intervals for an arbitrary function of probability distribution parameters. Computational Statistics, 2013, 28, 1501-1527.	0.8	13
27	Exploratory data analysis of the electrical energy demand in the time domain in Greece. Energy, 2017, 134, 902-918.	4.5	13
28	Explanation and Probabilistic Prediction of Hydrological Signatures with Statistical Boosting Algorithms. Remote Sensing, 2021, 13, 333.	1.8	10
29	Massive feature extraction for explaining and foretelling hydroclimatic time series forecastability at the global scale. Geoscience Frontiers, 2022, 13, 101349.	4.3	10
30	Time Series Features for Supporting Hydrometeorological Explorations and Predictions in Ungauged Locations Using Large Datasets. Water (Switzerland), 2022, 14, 1657.	1.2	10
31	Data and code for the exploratory data analysis of the electrical energy demand in the time domain in Greece. Data in Brief, 2017, 13, 700-702.	0.5	6
32	Probabilistic Water Demand Forecasting Using Quantile Regression Algorithms. Water Resources Research, 2022, 58, .	1.7	6
33	Streamflow forecasting at large time scales using statistical models. , 2021, , 51-86.		1

34 Error Evolution Patterns in Multi-Step Ahead Streamflow Forecasting. , 0, , .