
Jerome Paggetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2136346/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood, 2015, 126, 1106-1117.	0.6	399
2	Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-β and miR23a transfer. Oncolmmunology, 2016, 5, e1062968.	2.1	247
3	Tumor-derived exosomes modulate PD-L1 expression in monocytes. Science Immunology, 2017, 2, .	5.6	236
4	Targeting autophagy inhibits melanoma growth by enhancing NK cells infiltration in a CCL5-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9271-E9279.	3.3	181
5	MicroRNA as biomarkers and regulators in B-cell chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6573-6578.	3.3	159
6	The Critical Role of the Tumor Microenvironment in Shaping Natural Killer Cell-Mediated Anti-Tumor Immunity. Frontiers in Immunology, 2013, 4, 490.	2.2	155
7	The B-Side of Cancer Immunity: The Underrated Tune. Cells, 2019, 8, 449.	1.8	117
8	Dual PD1/LAG3 immune checkpoint blockade limits tumor development in a murine model of chronic lymphocytic leukemia. Blood, 2018, 131, 1617-1621.	0.6	101
9	Transcription intermediary factor $1^{\hat{1}3}$ is a tumor suppressor in mouse and human chronic myelomonocytic leukemia. Journal of Clinical Investigation, 2011, 121, 2361-2370.	3.9	91
10	Autophagy: An adaptive metabolic response to stress shaping the antitumor immunity. Biochemical Pharmacology, 2014, 92, 31-42.	2.0	76
11	MOZ/TIF2â€induced acute myeloid leukaemia in transgenic fish. British Journal of Haematology, 2008, 143, 378-382.	1.2	69
12	The multifaceted role of autophagy in tumor evasion from immune surveillance. Oncotarget, 2016, 7, 17591-17607.	0.8	53
13	Colony-stimulating factor-1–induced oscillations in phosphatidylinositol-3 kinase/AKT are required for caspase activation in monocytes undergoing differentiation into macrophages. Blood, 2009, 114, 3633-3641.	0.6	51
14	Crosstalk between leukemia-associated proteins MOZ and MLL regulates HOX gene expression in human cord blood CD34+ cells. Oncogene, 2010, 29, 5019-5031.	2.6	48
15	A role for miR-142-3p in colony-stimulating factor 1-induced monocyte differentiation into macrophages. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1936-1946.	1.9	43
16	Chronic Lymphocytic Leukemia-Derived Extracellular Vesicles Contain a Distinctive Proteome, As Well As Specific Micro RNAs and Y RNAs. Blood, 2014, 124, 1968-1968.	0.6	28
17	Hematological Malignancy-Derived Small Extracellular Vesicles and Tumor Microenvironment: The Art of Turning Foes into Friends. Cells, 2019, 8, 511.	1.8	26
18	HSP110 translocates to the nucleus upon genotoxic chemotherapy and promotes DNA repair in colorectal cancer cells. Oncogene, 2019, 38, 2767-2777.	2.6	26

JEROME PAGGETTI

#	Article	IF	CITATIONS
19	Hijacker of the Antitumor Immune Response: Autophagy Is Showing Its Worst Facet. Frontiers in Oncology, 2016, 6, 246.	1.3	22
20	Driving Natural Killer cells toward the melanoma tumor battlefield: Autophagy as a valuable therapeutic target. Oncolmmunology, 2018, 7, e1452583.	2.1	18
21	A MiR-142-3p/EGR2 Feedback Circuitry In Human CSF-1 Driven Differentiation of Monocytes Into Macrophages. Blood, 2011, 118, 2366-2366.	0.6	18
22	Diagnostic and Therapeutic Potential of Extracellular Vesicles in B-Cell Malignancies. Frontiers in Oncology, 2020, 10, 580874.	1.3	17
23	High-dimensional mass cytometry analysis revealed microenvironment complexity in chronic lymphocytic leukemia. Oncolmmunology, 2018, 7, e1465167.	2.1	15
24	In Vitro Sensitivity to Venetoclax and Microenvironment Protection in Hairy Cell Leukemia. Frontiers in Oncology, 2021, 11, 598319.	1.3	13
25	The prohibitin-binding compound fluorizoline induces apoptosis in chronic lymphocytic leukemia cells <i>ex vivo</i> but fails to prevent leukemia development in a murine model. Haematologica, 2018, 103, e154-e157.	1.7	12
26	Intrinsic Resistance of Chronic Lymphocytic Leukemia Cells to NK Cell-Mediated Lysis Can Be Overcome In Vitro by Pharmacological Inhibition of Cdc42-Induced Actin Cytoskeleton Remodeling. Frontiers in Immunology, 2021, 12, 619069.	2.2	11
27	Method for the Analysis of the Tumor Microenvironment by Mass Cytometry: Application to Chronic Lymphocytic Leukemia. Frontiers in Immunology, 2020, 11, 578176.	2.2	10
28	Purification of Leukemia-Derived Exosomes to Study Microenvironment Modulation. Methods in Molecular Biology, 2019, 1884, 231-245.	0.4	9
29	The Tumor Microenvironment-Dependent Transcription Factors AHR and HIF-1α Are Dispensable for Leukemogenesis in the Eµ-TCL1 Mouse Model of Chronic Lymphocytic Leukemia. Cancers, 2021, 13, 4518.	1.7	4
30	Stromal cell-induced miRNA alteration in chronic lymphocytic leukemia: how a minute and unavoidable cell contamination impairs miRNA profiling. Leukemia, 2013, 27, 1773-1776.	3.3	3
31	A Specific CD44lo CD25lo Subpopulation of Regulatory T Cells Inhibits Anti-Leukemic Immune Response and Promotes the Progression in a Mouse Model of Chronic Lymphocytic Leukemia. Frontiers in Immunology, 2022, 13, 781364.	2.2	3
32	Symplekin, a polyadenylation factor, prevents MOZ and MLL activity on HOXA9 in hematopoietic cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3054-3063.	1.9	2
33	Chronic Lymphocytic Leukemia-Exosomes Switch Endothelial and Mesenchymal Stromal Cells into Cancer-Associated Fibroblasts to Sustain Leukemic Cell Survival. Blood, 2014, 124, 2927-2927.	0.6	2
34	BCR engagement in CLL: when translation goes wrong. Blood, 2016, 127, 378-380.	0.6	1
35	MYST3/NCOA2-Induced Acute Myeloid Leukemia in Transgenic Fish. Blood, 2008, 112, 5329-5329.	0.6	0
36	Chronic Lymphocytic Leukemia-Derived Exosomes Stimulate Cells From The Microenvironment. Blood, 2013, 122, 3683-3683.	0.6	0

#	Article	IF	CITATIONS
37	Abstract 144: Leukemic exosomes stimulate cells from the microenvironment to promote chronic lymphocytic leukemia. , 2014, , .		0
38	Abstract A30: Chronic lymphocytic leukemia-derived extracellular vesicles mediate NFkB signaling and pro-inflammatory cytokine release in monocytes. , 2016, , .		0
39	Eomes and IL-10 Regulate Anti-Tumor Activity of T Cells in Chronic Lymphocytic Leukemia. Blood, 2019, 134, 4288-4288.	0.6	0
40	Editorial: New Insights Into the Complexity of Tumor Immunology in B-Cell Malignancies: Prognostic and Predictive Biomarkers and Therapy. Frontiers in Oncology, 2021, 11, 841763.	1.3	0
41	Editorial: New Insights into the Complexity of Tumor Immunology in B-cell Malignancies: Tumor Immunology and Immunotherapy. Frontiers in Oncology, 2022, 12, 853620.	1.3	0
42	Editorial: New Insights Into the Complexity of Tumor Immunology in B-Cell Malignancies: Disease Biology and Signaling. Frontiers in Oncology, 2021, 11, 820984.	1.3	0